

1359-A Ellsworth Industrial Boulevard ■ Atlanta, GA 30318 ■ Telephone (404) 636-0928 ■ FAX (404) 636-7162 ■ http://www.kemron.com

March 20, 2008

Mr. Tim Fleury Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, Rhode Island 02908

RE: Final Remedial Investigation Report

Site 04 - Potential Past Disposal Area; Lincoln AMSA 68 (G)

Smithfield, RI

Dear Mr. Fleury:

KEMRON Environmental Services (KEMRON), on behalf of the U.S. Army Environmental Command, is transmitting three copies of the Final Remedial Investigation (RI) Report for the Site 04 Potential Past Disposal Area at the Lincoln Area Maintenance Support Activity 68 (G) located in Lincoln and Smithfield, RI. The report has been prepared in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The Army's intent is to achieve site closure under CERCLA and achieve Response Complete under the Defense Environmental Restoration Program for this portion of the AMSA 68 (G) U.S. Army Reserve property.

The purpose of the RI Report is to summarize the results of investigations conducted, present the human health risk assessment, and provide a recommendation that either more work is required or No Further Action is appropriate. The RI Report concludes that there is no unacceptable risk to human health or the environment from exposure to site soil and groundwater based on current and reasonably foreseeable future land use, and therefore No Action under CERCLA is appropriate for the Site 04 Potential Past Disposal Area. The Final RI Report includes an appendix containing responses to RIDEM review comments on the Draft Final RI Report.

Please note that a Public Notice will be published in the Providence Journal to announce that this RI Report will be available for public review at the Lincoln Public Library and the East Smithfield Public Library. In accordance with CERCLA requirements, public comments received on the RI Report will be addressed in the Responsiveness Summary portion of the Decision Document to be prepared by the U.S. Army.

Should you have any questions please contact Lou Ehrhard of KEMRON at 847-266-1350, ext. 10, or Mark Stelmack of MACTEC at 207-828-3592.

Sincerely,

KEMRON Environmental Services, Inc.

Tracy Bergquist
Program Manager

Mr. Tim Fleury March 20, 2008 Page 2

Enclosure Final Remedial Investigation Report for Site 04 Potential Past Disposal Area

Lincoln Area Maintenance Support Activity 68 (G), Smithfield, RI.

cc: Richard Mendoza, USAEC

Heidi Novotny, USACE

Daniel Walsh, Contractor for USAEC Steve Lombardi, 94th RRC (w/encl)

Lou Ehrhard, KEMRON Mark Stelmack, MACTEC

94th Regional Readiness Command AMSA 68 (G), USAR, Lincoln, RI Final Remedial Investigation Report Site 04 - Potential Past Disposal Area Contract # W911SO-04-F0017

Submitted to:

United States Army Environmental Command 1 Rock Island Arsenal Bldg 90, 3rd Fl, Room 30A Attn: IMAE-CDN (Mr. Rich Mendoza) Rock Island, Il 61299

Contracted by:

US Army Contracting Agency APG Directorate of Contracting Building 4118, Susquehanna Avenue Aberdeen Proving Ground, MD 21005

KEMRON Environmental Services, Inc. 1359-A Ellsworth Industrial Boulevard Atlanta, GA 30318

Table of Contents

Table of Contents List of Acronyms

Section 1.0	Project Background1					
	1.1	Introd	uction	1		
	1.2	Regulatory Framework				
	1.3		ty Location			
	1.4					
	1.5	Physic	cal Setting	3		
		1.5.1	Topography			
		1.5.2	Regional Geology	3		
		1.5.3	Regional Hydrogeology			
			1.5.3.1 Regional Hydrogeology			
			1.5.3.2 Previous Hydrogeologic Data and Interpretations			
		1.5.4	Surface Water			
		1.5.5	Climate			
		1.5.6	Land Use and Demography			
	1.6	Previo	ous Investigations			
C4 2.0	D	. J 1 T		1 /		
Section 2.0			estigation			
	2.1		nary of 2006-2007 RI Field Activities			
		2.1.1	Mobilization/Demobilization			
		2.1.2	Site Clearance and Utility Mark-Out			
		2.1.3	Direct Push Soil and Groundwater Sampling			
		2.1.4	Monitoring Well Installation			
		2.1.5	Monitoring Well Sampling			
		2.1.6	Sample Analyses and Data Validation			
		2.1.7	Survey			
		2.1.8	Groundwater Measurements			
		2.1.9	Investigation-Derived Waste			
	2.2		nary of Results			
		2.2.1	Site Geology			
		22.2	Site Hydrogeology			
		2.2.3	Analytical Results			
			2.2.3.1 Soil Samples			
			2.2.3.2 Groundwater Samples			
		2.2.4	Site 04 - PDA Summary of Findings	24		
Section 3.0	Rasel	ine Risk	Assessment	63		
Section 5.0	Dasci	3.1	Human Health Risk Assessment.			
		3.1	3.1.1 Hazard Identification			
			3.1.2 Exposure Assessment			
			3.1.3 Toxicity Assessment			
			3.1.4 Risk Characterization			
			3.1.5 Uncertainty Analysis			
		3.2	Ecological Risk Evaluation			
		2.2	Leological Nisk Lyaluation	1 >		

Table of Contents, continued

Section 4.0	Conclusions and Recommendations	95
	4.1 Summary and Conclusions Site 04 - PDA	95
	4.2 Recommendations	
Section 5.0	References	96
LIST OF APP	PENDICES	
Appendix A	Adjacent Properties Maps	
Appendix B	2004 RI Report – Tables 5.2 And 5.3	
Appendix C	Exploration Logs	
• •	C-1: Site 04 Soil Boring Logs	
	C-2: Site 04 Direct-Push Groundwater Sampling Logs	
	C-3: Soil Boring Logs – Briggs Associates, 1986	
Appendix D	Monitoring Well Construction Diagrams	
Appendix E	Monitoring Well Development Records	
Appendix F	Field Data Records – Low-Flow Groundwater Sampling	
Appendix G	Data Validation Summaries	
	G-1: 2006 Analyses	
	G-2: 2007 Analyses	
Appendix H	2007 Survey Data	
Appendix I	Hydrogeologic Calculations	
Appendix J	2006-2007 RI Analytical Data	
Appendix K	Risk Assessment Supporting Information	
Appendix L	Technical Memorandum, Risk Characterization - Residential	Land Use
Appendix M	Response to RIDEM Comments on Draft Final Remedial Inv	restigation Report

Figure 1-1	Locus Map
Figure 1-2	AMSA 68 (G) Facility Layout
Figure 1-3	Previous Exploration Locations
Figure 2-1	Direct-Push Soil Exploration Locations
Figure 2-2	Direct-Push Groundwater Exploration Locations
Figure 2-3	Monitoring Well Locations – Sites 04 and 05
Figure 2-4	Interpretive Groundwater Elevation Contours and Flow Direction – Shallow Overburden, May 23, 2007
Figure 2-5	Interpretive Groundwater Elevation Contours and Flow Direction – Shallow Overburden, June 25, 2007
Figure 2-6	Interpretive Groundwater Elevation Contours and Flow Direction – Deep Overburden, June 25, 2007
Figure 2-7	Benzene in Soil, 0-2 feet bgs
Figure 2-8	Toluene in Soil, 0-2 feet bgs
Figure 2-9	Ethylbenzene in Soil, 0-2 feet bgs
Figure 2-10	Naphthalene in Soil, 0-2 feet bgs
Figure 2-11	Cis-1,2-Dichloroethene in Soil, 0-2 feet bgs
Figure 2-12	Trichloroethene in Soil, 0-2 feet bgs
Figure 2-13	Benzene in Groundwater, 0-12 feet bgs

LIST OF FIGURES, continued

Figure 2-14	Benzene in Groundwater, > 12 feet bgs
Figure 2-15	Toluene in Groundwater, 0-12 feet bgs
Figure 2-16	Toluene in Groundwater, > 12 feet bgs
Figure 2-17	Ethylbenzene in Groundwater, 0-12 feet bgs
Figure 2-18	Ethylbenzene in Groundwater, > 12 feet bgs
Figure 2-19	Naphthalene in Groundwater, 0-12 feet bgs
Figure 2-20	Naphthalene in Groundwater, > 12 feet bgs
-	- -

LIST OF TABLES

Table 1-1	Summary of Petroleum UST Information for the AMSA 68 (G) Property
Table 1-2	Public Groundwater Drinking Water Supply Sources within 4-Radial Miles of AMSA 68 (G)
Table 2-1	Summary of Remedial Investigation Direct-Push Explorations
Table 2-2	Summary of Remedial Investigation Explorations and Analyses
Table 2-3	Monitoring Well Details
Table 2-4	Groundwater Elevations
Table 2-5	Detected Analytes in Soil
Table 2-6	Detected Analytes in Groundwater
Table 3-1	Summary of Remedial Investigation Explorations and Analyses
Table 3-2	Selection of Chemicals of Potential Concern - Soil
Table 3-3	Selection of Chemicals of Potential Concern - Groundwater
Table 3-4	Selection of Exposure Pathways
Table 3-5	Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future
	Land Use Soil
Table 3-6	Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future
	Land Use Groundwater
Table 3-7	Summary of Exposure Point Concentrations - Soil
Table 3-8	Summary of Exposure Point Concentrations – Groundwater and Indoor Air
Table 3-9	Cancer Toxicity Data Oral/Dermal
Table 3-10	Cancer Toxicity Data Inhalation
Table 3-11	Non-Cancer Toxicity Data Oral/Dermal
Table 3-12	Non-Cancer Toxicity Data Inhalation
Table 3-13	Calculation of Chemical Cancer Risks and Non-Cancer Hazards Reasonable
	Maximum Exposure - Future Land Use - Industrial/commercial Worker - Adult

LIST OF ACRONYMS

AMSA Area Maintenance Support Facility

amsl above mean sea level AOC area of concern

ATSDR Agency for Toxic Substances and Disease Registry

BTEX benzene, toluene, ethylbenzene, xylenes

bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CERCLIS Comprehensive Environmental Response, Compensation and Liability Information

System

DERP Defense Environmental Restoration Program

DRO diesel range organics

DSERTS Defense Site Environmental Restoration Tracking System

EPCs exposure point concentrations EPH extractable petroleum hydrocarbon

ft feet

GA GO RIDEM Groundwater Objectives for a GA classified aquifer GA LC RIDEM Leachability Criteria for a GA-classified aquifer

GC/FID gas chromatograph/flame ionization detector

GFPR guaranteed fixed-price remediation

gpm gallons per minute GRO gasoline range organics

GZA Goldberg-Zoino and Associates

HHRA human health risk assessment

HEAST Health Effects Assessment Summary Table

I/C DEC RIDEM Industrial/Commercial Direct Exposure Criteria

IDW investigation-derived waste

IRIS Integrated Risk Information System

KEMRON Environmental Services, Inc.

kg kilogram

L liter

LUC land use control

MACTEC Engineering and Consulting, Inc.

MADEP Massachusetts Department of Environmental Protection

mg milligram

MRL Minimum Risk Level

NCEA National Center for Environmental Assessment

NCP National Oil and Hazardous Substances Pollution Contingency Plan

LIST OF ACRONYMS, continued

OSWER Office of Solid Waste and Emergency Response

PAH polynuclear aromatic hydrocarbon PDA Potential Past Disposal Area PID photoionization detector PPE personal protective equipment

ppm parts per million

PPRTVs provisional peer reviewed toxicity values

QAPP Quality Assurance Project Plan

QA quality assurance QC quality control

RCRIS Resource Conservation and Recovery Information System

Rfd reference dose

RI Remedial Investigation

RIAC Rhode Island Airport Corporation

RIDEM Rhode Island Department of Environmental Management

RRC Regional Readiness Command

SAP Sampling and Analysis Plan

SI Site Investigation

SIR Site Investigation Report

STSC Superfund Technical Support Center

SVOC semivolatile organic compound

TOC total organic carbon

TPH total petroleum hydrocarbons

UCL upper confidence limit

UICP Underground Injection Control Program
USACE United States Army Corps of Engineers
USACE United States Army Environmental Comm

USAEC United States Army Environmental Command

USAR United States Army Reserve

USARC United States Army Reserve Center

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

UST underground storage tank

VOCs volatile organic compounds VPH volatile petroleum hydrocarbons

Section 1.0 Project Background

1.1 Introduction

MACTEC Engineering and Consulting, Inc. (MACTEC), in partnership with KEMRON Environmental, Inc. (KEMRON) under contract to the United States Army Environmental Command (USAEC) through the APG Directorate of Contracting, has conducted a Remedial Investigation (RI) at Site 04 - Potential Past Disposal Area (PDA, Site) located on United States Army Reserve (USAR) 94th Regional Readiness Command (RRC) property in Smithfield, Rhode Island. The purpose of this RI Report is to characterize the nature and extent of contamination, determine whether or not additional environmental restoration efforts are needed, and to make recommendations for further actions. This report presents the results of the RI field investigations conducted at Site 04 in January 2006 and May-June 2007.

1.2 Regulatory Framework

The U.S. Army, as the lead agency, is conducting response actions at Site 04 in accordance with the Defense Environmental Restoration Program (DERP), which requires that these activities be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). Additionally, the Army's intent is to achieve site closure under CERCLA and achieve Response Complete under DERP for Site 04.

The U.S. Army Reserve Center (USARC) is not on the National Priority List (NPL) of CERCLA sites, but it is on the CERCLA inventory list of sites (CERCLIS ID No. RID0980520167).

This RI Report summarizes the results of the field investigation activities conducted at Site 04 in January 2006 and May-June 2007. The Soil and Groundwater Objectives identified in the Rhode Island Department of Environmental Management (RIDEM) Remediation Regulations (RIDEM, 2004) are being used as screening criteria during evaluation of Site data. Groundwater beneath the property is designated by RIDEM as GB, which indicates the groundwater may not be suitable for public or private drinking water use without treatment due to known or presumed degradation. However, as specified in the Remediation Regulations (RIDEM, 2004), the GB Groundwater Objectives are not applicable to sites where the contaminated groundwater poses a substantial likelihood of exceeding a surrounding GA Groundwater Objective. Since the Area Maintenance Support Facility (AMSA) 68 (G) facility abuts property with a GA-classified aquifer, the Site 04 groundwater data are screened against GA Groundwater Objectives (GA GO).

For data screening purposes, the analytical data within this report have been compared to criteria presented in RIDEM's Remediation Regulations (DEM-DSR-01-93, as amended February 2004), as follows:

<u>Soil Data:</u> screened against 1) RIDEM's Industrial/Commercial Direct Exposure Criteria (I/C DEC), and 2) GA Leachability Criteria (GA LC). The GA LC is applied only to those soils above the water table (in the vadose zone), and is applicable to Site 04 in accordance with Rule 8.02 A.ii of RIDEM's Remediation Regulations (RIDEM, 2004).

Groundwater Data: screened against GA GO.

This RI Report also includes a Human Health Risk Assessment (HHRA) for Site 04 that has been performed in accordance with CERCLA, the NCP, and applicable United States Environmental Protection Agency (USEPA) guidance. The results of the risk assessment provide the basis for recommendations presented in this RI Report.

1.3 Facility Location

The AMSA 68 (G) Facility is located in the North Central Industrial Park in Smithfield, RI (Note: the east portion of the property is located in the town of Lincoln; Lincoln, Rhode Island is the mailing address) (**Figure 1-1**).

1.4 AMSA 68 (G) Facility Description and History

The AMSA 68 (G) property is located on 4.01 acres in the town of Smithfield, Providence County, Rhode Island. The AMSA 68 (G) property is located within the North Central Industrial Park along the southern side of Albion Road (Rhode Island Route 123), approximately 500 feet northeast of Jenckes Hill Road. The geographic coordinates as referenced to the approximate center of the AMSA 68 (G) property are 41° 55' 22.9' north latitude and 71° 29' 10.1" west longitude. The United States Department of the Army is the current owner of AMSA 68 (G) property. Records at the town of Smithfield Tax Assessor's Office identify the property as part of Parcel No. 47A on Map No. 45. The property is abutted by Albion Road to the northwest and the North Central State Airport beyond, Pure Platinum LLC to the northeast, Sandvik Co./Madison Industries to the southeast; and an undeveloped wooded parcel to the south and southwest. **Figure 1-2** presents the facility layout.

The United States Department of the Army acquired two undeveloped parcels totaling 3.76 acres from the State of Rhode Island and a third parcel (0.25 acres) from United States Department of the Air Force in 1957. The AMSA 68 (G) facility was constructed on these three parcels in 1958 for the Department of the Army. At the time of its construction, the facility was designated as a Technical Site Support Facility for the seven original Nike Sites that comprised the Providence Defense Areas. Prior to 1958, much of the AMSA 68 (G) property was undeveloped or was occupied by farmland. Three buildings were constructed on the AMSA 68 (G) property: a maintenance building (main building), historically used for field maintenance repairs, direct exchange of repair parts and automotive, engineering, and signal support; a water pump house, historically used as a fire-suppression water delivery pump house; and a Ouonset Hut, which was reportedly used for storage of oil, grease, petroleum, oil and lubricants (POL) and solvents. The maintenance building is still present on the facility. A 120,000-gallon underground reservoir, used as a component of the fire-suppression system (in conjunction with the fire-suppression pump house), was located to the east of the maintenance building (Figure 1-2). Water was pumped out of the reservoir, and the reservoir and pump house were demolished in November 2006. The Quonset Hut is no longer present on-site, but was located between monitoring well MW-13 and piezometers PZ-1 (**Figure 1-2**). No information regarding the dates of construction or removal of this building is available; however, records indicate that a building was removed from the property in 1960 and this date would substantiate a former employee's recollection of the Quonset Hut removal. The Quonset Hut area is designated as an area of concern (AOC)/Source 6.

Wastes generated on the Lincoln AMSA 68 (G) property during the 1960s and 1970s were primarily solvents used for degreasing, and waste oils. Spent solvents (kerosene was the primary solvent used, with acetone also used on-site) used in parts cleaning were stored in a 1,000-gallon underground storage tank (UST) located near the northern exterior corner of the maintenance building prior to off-site disposal (**Figure 1-2**). The UST was installed in 1985 and registered with the State in 1986. The UST was not used for solvent storage after 1972 (ENSR, 1993). The Army removed the UST in the early 1990s.

According to a representative of the Department of the Army, two floor drains located in the northern portion of the maintenance building were formerly connected to an oil/water separator and dry well system, located approximately 20 feet northeast of the eastern corner of the building. In a February 12, 1988 letter to RIDEM, a representative of the Department of the Army indicated that great care was taken at the AMSA 68 (G) facility not to dispose of waste oils or anything else directly into the dry well.

However, cleaning practices during early on-site operations, according to both facility personnel and past employees, included washing of the floors and rinsing off vehicles, with the rinsate going to the floor drains. In July 1991, in compliance with the RIDEM Underground Injection Control Program (UICP), the U. S. Army pumped the dry well of its contents (including wastewater and sludge), and severed and capped the connection between the oil/water separator and the dry well in September 1991 (Nobis, 2004). The oil/water separator and dry well area are designated as AOC/Source 1.

The on-site septic system, located along the northeastern property boundary, currently receives only sanitary discharge from the maintenance building. This system consists of a septic tank (and pump lift) and four connected seepage pits. During a 1989 pumping of the septic tank, an overflow occurred and facility personnel observed an oily sheen on the ponded water. The system was pumped of all resultant liquid and sludge material. Analysis of the sample collected from the septic tank indicated the presence of volatile organic compounds (VOCs). The septic system area is designed as AOC/Source 2 and Defense Site Environmental Restoration Tracking System (DSERTS) Site 13.

Throughout the course of its operations, several petroleum USTs have been present on-site. The active 6,000 gallon fuel oil UST, former waste oil UST, and the former 1,000 gallon gasoline UST, are designated as AOC/Sources 3, 4, and 5, respectively (**Figure 1-2**). The former gasoline UST location is also designated as DSERTS Site 05. A summary of petroleum UST information for the AMSA 68 (G) facility is presented as **Table 1-1**.

The Potential Past Disposal Area (PDA) site is an inactive, non-regulated former disposal area along the property line north of the AMSA building (**Figure 1-2**). The site is referred to as the "area of suspected surface contamination" in ENSR (1993) and Nobis (2002) inspection reports. The PDA is also designated as DSERTS Site 04.

1.5 Physical Setting

The 4-acre facility is comprised of several structures, sheds and parking areas (**Figure 1-2**). A large grassy area is present on the east portion of the property, while grass also borders the north and west perimeters of the property. Surface runoff is directed from the facility to storm water drainage ditches along adjacent Albion Road and the northeast boundary of the facility.

1.5.1 Topography

The Unites States Geological Survey (USGS) topographic map for the area (**Figure 1-1**) indicates that the facility is relatively flat at approximately 455 feet above mean sea level (ft amsl).

1.5.2 Regional Geology

The AMSA 68 (G) facility is located within the Narragansett Bay drainage basin, most of which lies within the Seaboard Lowland section of the New England Physiographic Province (ENSR, 1993). The valleys and plains of this region are typically underlain by glacial outwash deposits, ranging in thickness from a few feet to over 150 feet. The outwash deposits generally consist of thin beds of sand separated by finer grained materials, and interbedded locally with coarser grained deposits of sand and gravel. The outwash deposits are generally underlain by a layer of glacial till, consisting of an unstratified mixture of grain sizes ranging from clay to boulders. The till ranges in thickness from a few feet to over 100 feet, but is commonly about 20 feet thick. The upland areas of this region are underlain mostly by glacial till and in some places by exposed bedrock. Bedrock in the region is generally of Paleozoic age and consists mostly of granite, syenite, anorthosite, and other intrusive igneous rocks and metamorphosed sedimentary rocks consisting of gneiss, schist, quartzite, slate, and marble.

1.5.3 Regional Hydrogeology

1.5.3.1 Regional Hydrogeology

Sand and gravel in the glacial outwash deposits are the principal sources of groundwater in the region. Yields of most municipal and industrial wells completed in the outwash deposits in the region range from 10 to 1,000 gallons per minute (gpm), and average about 100 gpm. A secondary aquifer in the region is found in the bedrock, particularly in fractured metasedimentary rock. The range in yield of most municipal and industrial wells withdrawing groundwater from the bedrock aquifer in the Providence, Rhode Island area is 5 to 200 gpm, while the average yield is about 30 gpm. Wells completed in till generally yield less than 2 gpm, unless lenses of sand and gravel are penetrated.

1.5.3.2 Previous Hydrogeologic Data and Interpretations

The facility is situated on the north slope of a local topographic high point at an approximate elevation of 450 ft amsl. The peak of the high point is located approximately 1,500 feet south of the facility at an elevation slightly greater than 460 feet. Based on the topography of the ground surface, it appears that the facility is located in an area of possibly diverging groundwater flow (to the north, west, and east) (ENSR, 1993).

ENSR conducted three rounds of water level measurements during the site investigation. An initial round of measurements was made in the five existing monitoring wells on December 14, 1992, as a basis for locating the additional monitoring wells to be installed during the site investigation. Based on the preliminary and limited data obtained from the first round of water level measurements, groundwater appeared to be flowing in a northerly direction across the facility, at a horizontal gradient of approximately 0.5 feet per 100 feet. The average depth to groundwater, at this time, was approximately 1.2 feet below ground surface (bgs).

Following the installation of the new monitoring wells and piezometers at the facility, a second round of water level measurements was collected prior to groundwater sampling on February 10, 1993. At this time, depth to water level measurements were made in the five existing wells, three newly installed wells, and the two piezometers. The data obtained during this second round of measurements indicated a more complex pattern of groundwater flow. Based on these results, it appears that a groundwater divide is present in both the northeast and southwest portions of the facility, as northward flowing groundwater diverges to the east and west, respectively. In addition the average depth to groundwater during the second round of measurements was approximately 3.3 feet bgs. This represents an average lowering of the water table by approximately 2.1 feet over the two months following the first round of water level measurements. Actual decreases in water levels measured between the first and second rounds ranged approximately 1.4 feet in MW-4 to 3.2 feet in MW-1. The average horizontal gradient determined for the second round of measurements was approximately 1.5 feet per 100 feet (i.e., three times steeper than the first round) (ENSR, 1993).

A third round of water level measurements was made in both the existing and new monitoring wells, and piezometers, on March 25, 1993. The results of these measurements indicated the presence of a groundwater divide in the northeast and southwest portions of the facility. However, the average depth to groundwater determined for the third round of measurements was approximately 0.5 feet bgs. This represents an average rise in the water table of approximately 2.8 feet since the second round of water level measurements. Actual increases in water levels measured between the second and third rounds ranged from approximately 1.7 feet in MW-4 to 4.0 feet in MW-1 and MW-5. The average horizontal gradient determined for the third round of measurements was approximately 0.5 feet per 100 feet (i.e., approximately the same as for the first round).

Based on the three rounds of water level measurements, it appears that the facility is generally characterized by a very shallow water table, subject to fluctuations on the order of several feet. The propensity for diverging groundwater flow resulting from the facility's topographical location is supported by the water level data, which indicate the presence of a groundwater divide in the northeast and southwest portions of the facility, causing northward flowing groundwater to diverge toward both the east and west, respectively.

1.5.4 Surface Water

A local wetland (the Town Line Swamp) is located topographically downgradient of the facility at an approximate distance of 0.6 miles to the north. Surface water in this area flows past the east side of Woonsocket Reservoir No. 3 (at a distance of approximately 1.4 miles of the facility) and into the northward flowing Crookfall Brook (a tributary to the southeastward flowing Blackstone River). The facility is also located approximately 0.4 miles west of a tributary headwater stream of the southeastward flowing Moshassuck River. In addition, a tributary stream of the Woonasquatucket River is located at a distance of approximate 0.75 miles southwest of the facility. The Woonasquatucket River also flows southeastward and joins the Moshassuck River to become the Providence River at their confluence in the City of Providence.

Due to the flat topography, surface water flow on the facility is toward drainage ditches. The only potentially sensitive environment located on the property is a 0.15-acre wetland located in the southeast corner of the property (see **Figure 1-2**).

1.5.5 Climate

Rhode Island has a four-season climate, but weather is quick to change. Narragansett Bay and all coastal areas are generally cooler in summer and warmer in winter - when compared with the inland regions. Statewide, winter is chilly and wet, with some snow. Overall, January is the coldest month, with average high temperatures near 30 degrees. July and August are the warmest months, with average high temperatures in the low 80s. Hotter conditions are common inland. Annual precipitation averages near 45 inches, with slightly higher amounts in the rolling hills, to the west of Narragansett Bay.

1.5.6 Land Use and Demography

Historically, the area surrounding the AMSA 68 (G) property has been occupied by commercial and industrial facilities since the early 1950s. Prior to that time, the land use for the area was primarily forest, farmland, and residential. The land surrounding AMSA 68 (G) is currently zoned for commercial, industrial, and residential use.

Drinking water for the facility and immediate surrounding properties is supplied by the Smithfield Water Supply Board, which is located at the Smithfield Department of Public Works, 3 Spragueville Road, Smithfield, Rhode Island. Public groundwater drinking water supply sources within a 4-mile radius of AMSA 68 (G) are presented in **Table 1-2**.

In May 2006, MACTEC conducted a records search at RIDEM for information on surrounding properties and the potential for contamination on those properties to impact soil and/or groundwater on the AMSA 68 (G) facility. Review of the records indicates that there is no recent information in RIDEM records to indicate that adjacent properties might be impacting the AMSA 68 (G) facility. The following paragraphs utilize information obtained form the RI Report (Nobis, 2004), the May 2006 RIDEM records search, and review of the on-line USEPA CERCLIS database to present information regarding adjacent and surrounding properties.

Current owners of adjacent properties include the State of Rhode Island, the Rhode Island Airport Corporation, Thyssenkrupp Materials Inc., National Glass Service Inc., and Pure Platinum LLC. **Appendix A** presents a map obtained from the Town of Smithfield, Rhode Island Tax Assessor's Online Database and a table summarizing the ownership of properties adjacent to AMSA 68 (G), current as of October 2006. **Appendix A** also contains a map indicating occupants of adjacent properties in 1993 (Source: Figure 2-3 of the 1993 ENSR Site Investigation Report). The North Central Airport for the State of Rhode Island is located directly across Route 123/Albion Road from the Lincoln Reserve Center. The AMSA 68 (G) facility is considered to be part of the North Central Industrial Park which was initially listed on the CERCLIS List as a site to be investigated (CERCLIS ID No. RID0980520167) on July 10, 1991. The facility is currently listed in the USEPA CERCLIS database as "Active". Active CERCLIS sites are sites at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted under the Superfund program.

The following facilities located in the industrial park have been listed as Archived Sites on the CERCLIS List:

Site Name	CERCLIS ID	RCRIS ID
Olin Hunt Specialty Products		RID981070923
Lincoln Dimensional Tubing (now AVNET Diecasting)	RID080811912	
Hedison Manufacturing (now Vistawall Architecture).	RID001198225	
Crossley Machine and Tool Co. (now Pure Platinum LLC)	RID987479516	RID001460534

The Archive designation indicates the site has no further interest under the Federal Superfund Program based on available information. USEPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. The Archive designation is removed and the site is returned to the CERCLIS inventory if more substantitive assessment and/or any cleanup work is necessary under the Federal Superfund program.

Other CERCLIS sites within one mile of the site are the Elm Street Dump, ID No. RID980520167, New England Container, ID No. RID048976732 and Old Jenckes Hill Road Disposal Area, ID No. RID981205818.

In 1981, RIDEM closed down all private wells in a half (0.5) mile radius of the Industrial Park after discovering groundwater contamination. In 1982, RIDEM delineated five plumes of VOC contamination south/southeast of the AMSA 68 (G) property. Four of the five plumes have been linked to the following local releases:

- Olin Hunt, manufacturer of photographic and microelectric chemicals had a faulty wastewater pretreatment system. The groundwater plume is believed to have affected 14 private wells with up to eight organic chemicals (xylene, benzene, chloroebenzene, ethylbenzene, toluene, dichloromethane, 1,2-dichlorethane and 1,1,2-trichloroethane). Olin Hunt is currently operating a pump-and-treat system on the property.
- Lincoln Dimensional Tubing, manufacturer of brass tubing operated improperly designed lagoons. The groundwater plume affected 20 wells with up to four organic chemicals (trichloroethene, 1,2-dichlorethane, bromodichloromethane, and dibromochloroemethane).
- Hedison Manufacturing, manufacturer of jewelry, released high density VOC air emissions, blamed for low levels of tetrachloroethene contamination.
- Faulty sewer line, located on Wellington Road, sealed in 1981, believed responsible for affecting 36 private wells with up to five organic chemicals (1.1.1-trichloroethane, trichloroethene, 1,1-dichloroethane, tetrachloroethene, and 1,1-dichloroethene.

The source of the fifth plume of contamination, made up of eight chemicals (including tetrachloroethene, 1,2-dichloroethene, trichlorofluromethane, 1,1-dichloroethane, and trichloroethene), has not been conclusively identified. This plume was found downgradient of the Speidel property; however, a RIDEM investigation of the Speidel site found only traces of four of the contaminants. Several other sites within the Industrial Park are also suspected by RIDEM of contributing to groundwater contamination. Review of AMSA 68 (G) historical and 2006 groundwater data indicates that these groundwater plumes do not have an impact on groundwater beneath Site 13.

The property adjacent to the AMSA 68 (G) property on the south/southeast is Thyssenkrupp Materials Inc. (formerly Madison A. Sandvic property). In 1989, Sandvic hired Goldberg-Zoino and Associates (GZA) to carry out a site investigation consisting of the installation of six groundwater monitoring wells plus the collection of 27 soil samples, four groundwater samples and one surface water sample. GZA determined that the groundwater flow at Madison A. Sandvic was in an east-southeasterly direction. Trace levels of volatiles were found in soil samples from three of the six boring locations. Trace levels of ethylbenzene, xylene and toluene were detected in the soil; these VOCs are typically associated with gasoline. The groundwater and surface water samples did not show any indications of gasoline associated compounds.

1.6 Previous Investigations

Available information for the USAR 94th RRC facility was previously presented in the Remedial Investigation Report completed by Nobis Engineering, Inc. (Nobis, 2004). Previous exploration locations are presented on **Figure 1-3**.

RIDEM's June 14, 2004 letter to the Department of the Army requested that the Nobis RI Report Summary Tables (i.e., Tables 5.2 and 5.3) be revised to include a comparison to RIDEM's GA Groundwater Objectives and GA Leachability Criteria. As the referenced tables were not available in their native electronic format, revisions to the tables have not been performed; however, MACTEC has compared the data in Tables 5.2 and 5.3 to the requested criteria. Tables 5.2 and 5.3 are provided in **Appendix B**. Comparison of the soil data in Table 5.2 to the GA Leachability Criteria results in the following samples with analyte concentrations exceeding the criteria:

- Benzene in sample MW-10-20-21' from the Former Waste Oil Separator and Dry Well
- Ethylbenzene, naphthalene, and TPH in sample NSB-3-6-8' from the Former Gasoline UST
- Naphthalene and total petroleum hydrocarbons (TPH) in samples TP-2G, TP-7G from the PDA

Comparison of the groundwater data in Table 5.3 of the 2004 Nobis RI Report to the GA Groundwater Objectives results in the following samples with analyte concentrations exceeding the criteria:

- Benzene, toluene, ethylbenzene, and naphthalene in monitoring well MW-10-from the Former Waste Oil Separator and Dry Well
- Benzene in monitoring well MW-9 from the Former Gasoline UST
- Benzene in monitoring well MW-8 from the PDA

The following paragraphs present the findings of previous investigations conducted at the Site.

The Potential Past Disposal Area (PDA) site is an inactive non-regulated disposal area along the property line north of the AMSA building (**Figure 1-3**). The site is referred to as the "area of suspected surface contamination" in ENSR (1993) and Nobis (2004) reports. Analyses of soil samples collected by ENSR at the PDA indicated the presence of lead, benzene and naphthalene in surface soil at concentrations exceeding standards promulgated in the RIDEM Rules and Regulations for the Investigation and

Remediation of Hazardous Material Releases. Specifically, lead was detected in one surface soil sample at a concentration of 1,120 milligrams/kilogram (mg/kg), while the RIDEM Method 1 Direct Exposure Industrial/Commercial Criteria is 500 mg/kg; benzene was detected in one sample at 0.440J mg/kg, while the GA Leachability Criterion is 0.2 mg/kg; naphthalene was detected in one sample at 2.9 mg/kg, while the GA Leachability Criterion is 0.8 mg/kg (ENSR, 1993).

Analyses of soil samples collected during a remedial investigation (RI) conducted by Nobis on March 18 and 19, 2003, indicated that the concentration of TPH in samples collected from test pits TP-2 and TP-7 exceeded the Method 1 Residential Direct Exposure Criteria of 500 mg/kg, but were less than the Industrial/Commercial Direct Exposure Criteria of 2,500 mg/kg. The soil sample collected from test pit TP-2 contained a gasoline range organics concentration of 1,300 mg/kg. The soil sample collected from test pit TP-7 contained a combined gasoline range organics (340 mg/kg), motor oil/hydraulic oil organics (410 mg/kg), and unidentified hydrocarbons (160 mg/kg) with a TPH concentration of 910 mg/kg. There were no other compounds/metals detected at concentrations exceeding the RIDEM Method 1 Industrial/Commercial Soil Direct Exposure Criteria or the GA Leachability Criteria in soil samples collected at the PDA (Nobis, 2004).

BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) were detected in a groundwater sample collected by ENSR on February 10, 1993, from monitoring well EW-2, formerly located within the PDA (this well has since been destroyed). Of these BTEX compounds, benzene and toluene exceeded the GA Groundwater Objectives. The concentrations of benzene and toluene were 7.4 milligrams per liter (mg/L) and 3.0 mg/L, respectively, while the GA Groundwater Objective for benzene is 0.005 mg/L and 1.0 mg/L for toluene. Based on the results of the sample collected from EW-2, migration of benzene and toluene in groundwater downgradient from the PDA and beyond the AMSA 68 (G) boundaries is possible. The source of the BTEX compounds in groundwater could potentially be Site 05 (Former Gasoline UST) or a drywell located between the UST and the PDA rather than the PDA itself. Except for a single reported cadmium concentration of 0.006 mg/L in one groundwater sample exceeding the RIDEM GA Groundwater Objective of 0.005 mg/L, only non-detectable or trace concentrations of metals in groundwater at the AMSA were noted by Nobis (Nobis, 2004).

Analysis of a groundwater sample collected from MW-8 (located downgradient and north of the former gasoline UST) during the RI performed by Nobis indicated a benzene concentration of 0.340 mg/L, which exceeds both the RIDEM GA and GB Groundwater Objectives of 0.005 mg/L and 0.140 mg/L, respectively. There were other petroleum-related compounds detected in this sample, including methylbenzene, total xylenes, alkyl benzene compounds, and naphthalene; none of these compounds were detected at concentrations above the GA groundwater objectives. Analyte concentrations were non-detect for samples collected from MW-1, located northwest of the PDA and MW-8, and MW-2, located northeast of the PDA and MW-8. Nobis concluded that MW-8 is located along the centerline of a groundwater contaminant plume associated with the former gasoline UST (Site 5). MW-8 is located approximately 100 feet downgradient of the former gasoline UST location. MW-1 and MW-2 bound the lateral extent of the contaminant plume. Based on the results of sampling conducted at MW-8, the leading edge of the plume may be off-site (Nobis, 2004).

ELEVATIONS REFERENCED TO MEAN SEA LEVEL.

MONITORING WELLS MW-1 THROUGH MW-5 WERE INSTALLED BY BRIGGS IN 1986. WELLS EW-1 THROUGH EW-3 WERE INSTALLED BY ENSR IN 1992. WELLS MW-6 THROUGH MW-13 WERE INSTALLED BY NOBIS IN 2002.

UNDERGROUND ELECTRIC AND TELEPHONE UTILITIES WERE ABANDONED IN THE 1980s. ELECTRICITY IS CURRENTLY SUPPLIED TO THE FACILITY VIA AN OVERHEAD LINE.

Prepared/Date: MRS / 04-02-07 Checked/Date: RP / 04-02-07

94TH REGIONAL READINESS COMMAND AMSA 68(G), USAR LINCOLN, RHODE ISLAND

SITE LAYOUT

GFPR CONTRACT # W911S0-04-F0017 FIGURE 1-2

94TH REGIONAL READINESS COMMAND AMSA 68(G), USAR LINCOLN, RHODE ISLAND

PREVIOUS EXPLORATION LOCATIONS GFPR CONTRACT # W911S0-04-F0017 FIGURE 1-3

Table 1-1 Summary of Petroleum UST Information for the AMSA 68 (G) Property Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

UST	UST Volume (gallons)	UST Location	Installation Date	Removal Date
Waste Oil/Waste Solvent*	1 1 000	Northern corner of maintenance building	Late 1950s	1991
Diesel Fuel	114	Southeast of the pump house	1955	1992
Gasoline	1,000	Southeast of the maintenance building	Late 1950s	Apr-85
No. 2 Fuel Oil*	6,000	Southeast of the maintenance building	1983 (1)	Dec-2006

Notes:

(1) Some records indicate that this tank was installed as early as 1958.

SOURCE: Nobis, 2004.

^{* =} Each of these USTs failed a leak test in 1990. The fuel oil UST was partially excavated and it passed a subsequent test. According to the Army, the active heating oil (No. 2 Fuel Oil) UST is tightness-tested on an annual basis and there have been no failing tests since 1990.

Table 1-2 Public Groundwater Drinking Water Supply Sources Within 4-Radial Miles of AMSA 68 (G)

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

Distance (miles)/Direction			Estimated Population	
from Site	Source Name	Location of Source ^A	Served	Source Type ^B
1.0 miles/northwest	Just For Kids, Inc. Well No. 1	Smithfield	111	Unknown
2.2 miles/east	Crest Manufacturing Co.	Lincoln	40	Unknown
2.5 miles/north	Woodland Convalescent Center	North Smithfield	54	Unknown
2.9 miles/northwest	N. Smithfield Elementary School	North Smithfield	584	Unknown
3.4 miles/north	Manville Well No. 10	Lincoln	Inactive	Overburden
3.4 miles/north	Manville Well No. 3	Lincoln	Inactive	Overburden
3.4 miles/north	Manville Well No. 5	Lincoln	Inactive	Overburden
3.4 miles/north	Manville Well No. 1	Cumberland	2,750	Overburden
3.4 miles/north	Manville Well No. 2	Cumberland	2,750	Overburden
3.6 miles/west	Herbert Nursing Home (two wells)	Smithfield	227	Unknown
3.8 miles/west	N. Smithfield Jr./Sr. High School	North Smithfield	875	Unknown

NOTES:

A - indicates Town in which well is located

B - Overburden, Bedrock, or Unknown

SOURCE: Nobis, 2002.

Prepared by: RP 11/08/06 Checked by: MS 11/09/06

Section 2.0 Remedial Investigation

MACTEC conducted field investigations at Site 04 - PDA during two separate mobilizations: January 2006 and May-June 2007. The methodologies employed for the field tasks are as indicated in the Sampling and Analysis Plan (SAP) (KEMRON/MACTEC, 2005a) and the Site 04 - Potential Past Disposal Area Sampling and Analysis Plan Addendum (KEMRON/MACTEC, 2007a) unless otherwise noted.

Subsection 2.1 presents a summary of the field activities conducted at Site 04 - PDA in January 2006 and May-June 2007. Subsection 2.2 presents the findings of the 2006 and 2007 Site 04 investigations and the Site 05 - Former Gasoline UST groundwater investigations are presented in Subsection 2.3.

2.1 Summary of 2006-2007 RI Field Activities

2.1.1 Mobilization/Demobilization

MACTEC mobilized to the site on January 17, 2006 for the on-site investigation, and began direct-push sampling efforts that morning. Direct-push services were provided by Geologic/Earth Exploration (Geologic) of Norfolk, Massachusetts, under the direction of MACTEC. Field work was substantially completed on January 31, 2006.

With the assistance of the U.S. Army Corps of Engineers, MACTEC coordinated with Rhode Island Airport Corporation (RIAC) and Pure Platinum for access to off-site properties to the north and northeast respectively, and the second mobilization to the site began on May 7, 2007 for the off-site and supplemental on-site investigation. Direct-push subcontractor Gfeologic of Norfolk, Massachusetts, also mobilized to the site on May 7, 2007. Drilling equipment was demobilized from the site on June 8, 2007. MACTEC completed monitoring well development and groundwater sampling on June 27, 2007.

2.1.2 Site Clearance and Utility Mark-Out

Prior to any intrusive subsurface investigations, all locations were cleared of underground utilities. The MACTEC Field Operations Leader located all drilling locations. Once drilling locations were staked, the commercial utility clearing service "Dig-Safe" was contacted to notify local utility companies that they were required to mark their subsurface utilities. Subsurface utilities present in the utility corridor adjacent to the northern boundary of the AMSA 68 (G) reportedly include a 20-inch water main, electrical, and cable lines. The exact locations and depths of the utility lines is unknown; KEMRON has made an inquiry to the utility corridor owner (Rhode Island Airport Corporation), and will add detail to this report as it is made available. Upon mobilization to the site May 7, 2007, it was apparent that neither subsurface electrical nor cable had been marked in the utility corridor to the north of the facility. Utility companies were contacted and completed utility mark-out by May 8, 2007. Exploration locations were adjusted as required to avoid subsurface utilities.

2.1.3 Direct-Push Soil and Groundwater Sampling

Direct-push soil and groundwater samples were collected using a GeoProbeTM as specified in the SAP (KEMRON/MACTEC, 2005a). A summary of RI direct-push explorations is presented as **Table 2-1**. **Table 2-2** presents a summary of RI explorations and analyses, as well as the sample collection method. A discussion of sample analyses and data validation is presented in Section 2.1.6 of this report. Soil boring logs are presented in **Appendix C**. The boring logs contain soil descriptions, field sample identification, depth to groundwater, and photoionization detector (PID) results.

January 2006

MACTEC collected 10 surface soil samples (SS-01 through SS-10) between ground surface and the water table to delineate the surficial contamination and to supplement the 1993 ENSR and 2003 Nobis data in the PDA. **Figure 2-1** presents the locations of these explorations. The majority of explorations were advanced to a total depth of four feet; however, three of the explorations were advanced further (SS-06, SS-07, and SS-09) to evaluate the potential for deeper contamination (**Table 2-1**).

Upon retrieval of each soil core from each borehole, the core was screened with a PID to determine whether any intervals exhibited organic vapors detectable by the PID (see **Appendix** C for PID results). Selection of samples for analysis was biased toward depth intervals with elevated PID readings. Soil samples were submitted for analyses, including VOCs, semivolatile organic compounds (SVOCs), extractable petroleum hydrocarbons (EPH), volatile petroleum hydrocarbons (VPH) and metals (**Table 2-2**).

Ten direct-push groundwater sampling locations were advanced at explorations SS-01 through SS-10 (**Figure 2-2**). The total of ten groundwater samples collected at these explorations is an increase over the number indicated in the SAP (KEMRON/MACTEC, 2005a), which had indicated that five groundwater samples would be collected. Samples were collected from the water table and submitted for VOC analyses to evaluate potential groundwater impacts (**Table 2-2**).

May-June 2007

MACTEC collected 10 surface soil samples (SS-11 through SS-20) between ground surface and the water table to delineate the surficial contamination on-site and off-site and to supplement the January 2006 investigation. **Figure 2-1** presents the locations of these explorations. All explorations were advanced to a total depth of four feet.

Upon retrieval of each soil core from each borehole, the core was screened with a PID to determine whether any intervals exhibited organic vapors detectable by the PID (see **Appendix** C for PID results). Selection of samples for analysis was biased toward depth intervals with elevated PID readings. Soil samples were submitted for analyses, including VOCs, TPH - diesel range organics (DRO), and TPH – gasoline range organics (GRO) (**Table 2-2**).

Seven direct-push groundwater sampling locations were advanced at explorations GP-01 through GP-07 (**Figure 2-2**). Groundwater samples, from the seven explorations, were generally collected from the water table to evaluate potential groundwater impacts. Samples were submitted for VOC analyses, total lead, and dissolved lead. Two samples, from explorations GP-01 and GP-02, were collected at 14-16 ft bgs, and submitted for VOC analyses.

2.1.4 Monitoring Well Installation

Eleven new monitoring wells, MW-14, MW-14D, MW-15, MW-15D, MW-20, MW-20D, MW-21, MW-21D, MW-22, and MW-22D were installed at Site 04 as part of the RI field investigation. **Figure 2-3** presents the locations of the newly installed monitoring wells. Monitoring well MW-24D depicted on **Figure 2-3**, was installed as part of the Site 05 - Former Gasoline UST Site Investigation. Newly installed monitoring wells were generally installed in separate boreholes than the direct-push groundwater sampling locations. MW-15D, MW-21D, and MW-22D were installed using a drill rig (hollow stem auger [HSA] method) to ensure that the bottom of the borehole would extend to bedrock and not cobbles that can prevent the GeoProbeTM from drilling to bedrock. The screened interval of the new shallow monitoring wells was placed to straddle the water table, and the screened interval of the new deep

monitoring wells was placed at refusal. Procedures outlined in Section 3.7.2 of the SAP (KEMRON/MACTEC, 2005a) were followed for installation of the new monitoring wells. **Table 2-3** presents the details of the monitoring well construction. Monitoring well construction diagrams are presented in **Appendix D**.

Monitoring wells were developed in accordance with Section 3.7.3 of the SAP (KEMRON/MACTEC, 2005a). Monitoring well development forms are presented in **Appendix E**.

2.1.5 Monitoring Well Sampling

The first round of monitoring well sampling was conducted at the site from January 26 through January 31, 2006. The following wells were sampled:

• MW-1, MW-2, MW-8, MW-14, and MW-15

The second round of sampling was conducted at the site from June 25 through June 27, 2007. The following wells were sampled:

• MW-1, MW-2, MW-8, MW-14, MW-14D, MW-15, MW-15D, MW-20, MW-20D, MW-21, MW-21D, MW-22, MW-22D, and MW-24D

Monitoring wells were sampled using low-flow techniques in accordance with Section 3.7.4 of the SAP (KEMRON/MACTEC, 2005a). Field data records for low-flow groundwater sampling can be found in **Appendix F**. Groundwater samples were shipped to the analytical laboratories (see Section 2.1.6) for analysis of VOCs and lead (total and dissolved) in January 2006, and for VOCs only in June 2007 (see **Table 2-2**).

2.1.6 Sample Analyses and Data Validation

Soil samples were analyzed for one or more of the following parameters:

- VOCs by Method 8260B
- SVOCs by Method 8270C
- VPH using Massachusetts Department of Environmental Protection (MADEP) methods
- EPH using MADEP methods
- Selected metals by Methods 6010B, 6020, and 7471A
- GRO by Method 8015M (Site 04 PDA samples only)
- DRO by Method 8015M (Site 04 PDA samples only)
- Total Organic Carbon by Method 9060

Aqueous samples were analyzed for one or more of the following parameters:

- VOCs by Method 8260B
- GRO by Method 8015M (Site 05 Former Gasoline UST samples only)
- DRO by Method 8015M (Site 05 Former Gasoline UST samples only)
- Total and dissolved lead by Method 6020

All analytes from the January 2006 investigation, except EPH and VPH, were performed by Kemron Environmental Services of Marietta, Ohio. Analyses for EPH and VPH were performed by Accutest

Laboratories of Marlborough, Massachusetts. All analytes from the May and June 2007 investigation were performed by ESS Laboratory, Cranston, Rhode Island.

January 2006 Samples

A Tier II validation was completed for all 2006 samples. For twenty percent of samples a Tier III data validation was performed for VOC, SVOC, and metals analyses. A chemist review was performed on the EPH and VPH analyses. The data package was validated using Region I EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (USEPA, 1996), Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (USEPA, 1988), Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (USEPA, 1989) and the Kemron USARC Massachusetts Quality Assurance Project Plan (KEMRON, 2005). Data validation procedures and findings are presented as **Appendix G-1**. Note that **Appendix G-1** provides data validation information for all of the AMSA 68 (G) sites sampled in January 2006, including Site 04 - PDA, and Site 13 - Septic System.

Testing for petroleum hydrocarbons in the January 2006 investigation, covering the gasoline range and diesel range, was completed using MADEP methods for VPH and EPH (MADEP, 2004b). These methods were originally specified in the RI sites program QAPP covering the Lincoln sites because they provide both total hydrocarbon data, as well as a detailed breakdown of hydrocarbon classes and target compounds that could be used in risk assessments. RIDEM provided comments on the Lincoln SAP (KEMRON/MACTEC, 2005) and requested GRO (TPH-8015) as well as DRO (TPH-8100) be included in the analysis. In response to these comments, GRO (TPH-8015) and DRO (TPH-8100) analyses were added to the sample analysis. Due to a miscommunication with the subcontract laboratory, samples were analyzed using the VPH and EPH methods. The VPH and EPH data are presented in this report. The VPH and EPH methods provide data equivalent to what would be obtained from methods 8015 and 8100 for use in evaluation of GRO and DRO hydrocarbons, and are interpreted to be usable for the evaluation Analysis for methods 8015, 8100, VPH, and EPH all are completed using the same instrumentation, gas chromatography/flame ionization detector (GC/FID). Method 8100 is a method designed for the analysis of polynuclear aromatic hydrocarbons (PAHs) that has very similar to procedures used to report PAHs in the EPH method, and reporting of DRO is not described in this method. Laboratories often report DRO referencing a modified Method 8100. Method 8015 describes options for GRO and DRO analysis. GRO and DRO is reported using total area response compared to fuel standards for hydrocarbon ranges C6-C10 (GRO) and C10-C28 (DRO). In the VPH and EPH procedures, total hydrocarbons are reported for aliphatic and aromatic hydrocarbons in carbon ranges from C5-C10 (VPH) and C9-C36 (EPH) based on component standards. The VPH and EPH methods also include an option for the reporting of primary target compounds found in fuels. The methods describe an unadjusted and adjusted value for VPH C5-C8 Aliphatics, C9-C12 Aliphatics, and C9-C10 Aromatics, and EPH C11-C22 Aromatics. Adjusted values have target compound concentrations removed from range concentrations. Unadjusted concentrations include the total area within the range without subtraction of target compounds.

Using the available VPH and EPH results, a concentration for TPH (calculated) was determined by summing the detected results of VPH C5-C8 Aliphatics (unadj.), C9-C10 Aromatics (unadj.), and C9-C12 Aliphatics (unadj.), and EPH C11-C22 Aromatics (unadj.), C19-C36 Aliphatics, and C9-C18 Aliphatics. These calculated TPH data are presented in Section 2.2 of this report.

May-June 2007 Samples

A USEPA Tier II validation was completed for all analytical samples collected in 2007, with the exception of GRO and DRO analyses performed on two groundwater samples collected from Site 05. For

ten percent of the 2007 samples, a Tier III data validation was performed for VOC, DRO, GRO, and metals analyses. The data package was validated using Region I EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (USEPA, 1996), Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (USEPA, 1988), Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (USEPA, 1989), and the KEMRON USARC Rhode Island Quality Assurance Project Plan (KEMRON/MACTEC, 2005b). Data validation procedures and findings are presented as **Appendix G-2**. Note that **Appendix G-2** provides data validation information for all of the AMSA 68 (G) sites sampled in May and June 2007, including Site 04 - PDA.

2.1.7 *Survey*

All direct-push soil and groundwater sample locations during the January 2006 investigation were referenced to existing structures (i.e., buildings, septic system seepage pits, etc.) on the site layout drawing (**Figure 2-1 and Figure 2-2**) using cardinal directions (compass) and distances. All direct-push soil and groundwater sample locations during the May and June 2007 investigation and all new monitoring wells (and existing monitoring wells) were located by ASEC Corporation (ASEC), Boston, Massachusetts, a Rhode Island Professional Licensed Surveyor, on May 16, 2007 and June 19, 2007. ASEC Corporation is a registered professional surveying company in the State of Rhode Island. Survey data for the explorations is presented as **Appendix H**.

2.1.8 Groundwater Measurements

Depth to groundwater measurements were conducted on January 31, 2006 and May 23, 2006 during the 2006 investigation, and depth to groundwater measurements were conducted on May 23, 2007 and June 25, 2007 during the 2007 investigation. Depth to groundwater measurements are presented and discussed in Section 2.2.2 of this report.

2.1.9 Investigation-Derived Waste

Solid and liquid investigation-derived waste (IDW) generated during the RI field investigation were handled in accordance with Section 5.0 of the SAP (KEMRON/MACTEC, 2005a). IDW generated during the RI field investigation included soil cuttings from soil boring advancement, water from well development, well purging and sampling, equipment decontamination, and used personal protective equipment (PPE). During the investigation, soil cuttings with PID screening results less than 10 parts per million (ppm) were returned to the boring holes from which the soil cutting were obtained, and liquid IDW from monitoring well purging with PID screening results of 0 ppm and no petroleum odor were spread uniformly over grass areas on-site. The remaining IDW was containerized and placed in clean Department of Transportation-approved 55-gallon steel drums (appropriately labeled for soil IDW and for liquid IDW) and stored on-site at Site 04-PDA.

The containerized IDW was stored on wood pallets, labeled in accordance with Section 5.0 of the SAP (KEMRON/MACTEC, 2005a). The IDW drums from the January 2006 investigations were removed on May 23, 2006 by New England Disposal Technologies. The IDW drums from the May-June 2007 investigations were removed on October 18, 2007 by Fleet Environmental Services and shipped to a licensed disposal facility. The waste manifests were signed by a representative from the U.S. Army Corps of Engineers, New England District.

2.2 Summary of Results

The following subsections present the site geology, hydrogeology, and the analytical results for Site 04 - PDA.

2.2.1 Site Geology

The United States Geological Survey (USGS) map of the Surficial Geology of the Pawtucket Quardrangle maps the area in the vicinity of the AMSA 68 (G) facility as ground moraine (glacial till), consisting of an unstratified mixture of clay, silt, sand, gravel, and boulders (ENSR, 1993). A reference on this map to several excavations along Harris Avenue (approximately 1 mile southeast of the facility) indicates the surficial material to be a compact brownish till. Logs of geotechnical borings performed on the AMSA 68 (G) property prior to construction activities in 1958, indicate a brown to gray compact gravely silty sand (till) underlying topsoil. In 1986, a drilling program was carried out by Briggs Associates, which installed five soil borings and five monitoring wells around the perimeter of the facility property (boring logs are included in **Appendix C**. Logs of these borings indicate the subsurface materials underlying topsoil to generally consist of brown to gray, medium dense to very dense, fine to coarse sand with little to some silt and trace amounts of gravel and cobbles. In the area between Site 05 and Site 04, there is some indication from the boring logs that the formation becomes somewhat coarser with depth (i.e., increasing amounts of fine to coarse gravel and cobbles, with gradation). A thin (typically less than 1foot thick) layer of weathered granite was encountered in several of the Briggs borings at depths ranging from 18 to 20 feet below the ground surface (bgs). Refusal of drilling tools at approximately 20 feet bgs appears to be rather abrupt, as indicated by blow counts greater than 100 over six inches in the first split spoon attempted at the top of bedrock (see logs in **Appendix C**). A seismic refraction survey performed in November 2002 indicated the depth to competent bedrock varies between 15 and 20 feet bgs. Based on the USGS map of the Bedrock Geology of Rhode Island (USGS, 1971), the bedrock underlying the facility corresponds with the Esmond Granite. The USGS describes the Esmond Granite as massive (i.e., displaying an absence of foliation, cleavage, or joints), medium to coarse grained granite, which is consistent with the observation of the thin layer of weathered granite and abrupt refusal of drilling tools at the bedrock surface.

2.2.2 Site Hydrogeology

The following are ranges of depths to groundwater beneath the AMSA 68 (G) facility for the dates indicated:

January 31, 2006	1.5 to 2.5 feet bgs
May 23, 2006	1 to 2 feet bgs
May 23, 2007	1 to 5 feet bgs
June 25, 2007	2 to 8 feet bgs

Based on the historical and 2007 rounds of water level measurements, it appears that the site is generally characterized by a very shallow water table, subject to fluctuations on the order of several feet.

Groundwater elevations were calculated for the May 23, 2007 and June 25, 2007 measurements, and are presented in **Table 2-4**. The overburden aquifer has been divided into shallow (water table to approximately 12 feet bgs) and deep (approximately 12 feet to 20 feet bgs) units for evaluation of vertical hydraulic gradients and contaminant distribution. Interpretive shallow groundwater elevation contours using the May 23, 2007 groundwater elevations are presented as **Figure 2-4**. June 25, 2007 interpretive shallow and deep groundwater elevation contours are presented as **Figures 2-5** and **2-6**, respectively.

Shallow overburden groundwater flow direction on the western side of the property on both dates is toward the north and northwest in the vicinity of Sites 04 and 05; however, the flow direction on the eastern portion of the property, in the vicinity of the Septic System (Site 13), is toward the east and southeast. A groundwater divide is present as a line trending northeast to southwest in the vicinity of monitoring well EW-3 (**Figures 2-4** and **2-5**). The location of the groundwater divide shifts depending on the water table elevation (i.e., seasonal effects), and impacts groundwater flow directions between Site 05 and Site 13. Due to the flat topography, surface water runoff is toward drainage ditches.

In the areas of Sites 04-PDA and 05-Former Gasoline UST, shallow overburden groundwater flow is to the north, from the Former Gasoline UST toward the PDA. An anomalously high water level in monitoring well MW-15 on May 23, 2007 (see **Figure 2-4**) may possibly be the result of a potential leaking water supply pipe running from the utility corridor north of the property into the AMSA 68(G) facility. The anomalously high water level may also be a transient effect due to infiltration of spring rains. This anomaly was also evident in the May 23, 2006 groundwater elevation data presented in the Draft Final Site Investigation Report (SIR) submitted to RIDEM on May 1, 2007. However, the anomalous water level at MW-15 is absent on June 25, 2007 (see **Figure 2-5**). The presence of the groundwater mound in the vicinity of MW-15 may cause some groundwater flowing from Site 05 to diverge toward the northeast. Overall, water table elevations are approximately 3 feet lower in June 2007 than May 2007.

Deep overburden groundwater interpretive groundwater elevation contours for June 25, 2007 are presented as **Figure 2-6**. Deep overburden groundwater flow direction is similar to that of the shallow overburden (see **Figure 2-5**), flowing to the north, from the Former Gasoline UST toward the PDA. However, the interpretive contours using the June 25, 2007 elevation data indicate a "sink" at MW-10D. This sink may be the result of higher permeability than the surrounding aquifer (potentially coarser material at depth between Site 05 and Site 04) and/or may be a transient effect due to fluctuations in the water table elevation as a result of infiltrating precipitation.

The groundwater elevation data from May 23, 2007 and June 25, 2007 indicate horizontal groundwater gradients ranging from 0.0033 feet/foot to 0.0223 feet/foot (see **Appendix I** for groundwater horizontal gradient calculations). Using an estimated site hydraulic conductivity value of 2.46 feet/day, a gradient of 0.00139 feet/foot, and a porosity of 0.3 from the Nobis 2004 RI Report (Nobis, 2004), an approximate groundwater flow velocity of 41 feet/year was calculated for the vicinity of Sites 04 and 05 (**Appendix I**).

Groundwater vertical hydraulic gradients using the June 25, 2007 groundwater elevation data are presented in **Appendix I**. The vertical hydraulic gradients between well pairs generally vary between 0.039 feet per foot downward to 0.057 feet/foot upward. The exception is the vertical gradient calculated for monitoring well pair MW-10/MW-10D, which is 0.45 feet/foot downward. May 2006 and May 2007 groundwater elevation data indicate shallow groundwater mounding in the vicinity of the MW-10/MW-10D well pair, although this is not evident in the June 25, 2007 data. Several other well pairs (MW-14/MW-14D, MW-15/MW-15D, MW-16/MW-16D, MW-17/MW-17D) in the vicinity of MW-10/MW-10D (located between Site 05 and Site 04) also exhibit downward vertical gradients in the June 25, 2007 data set. The remaining well pairs exhibit slight upward vertical gradients. Calculated vertical hydraulic gradient values are presented on **Figure 2-6**.

Due to the nature of the underlying Esmond granite bedrock (i.e., likely absence of joints, cleavage, fractures, etc.), bedrock beneath the AMSA 68 (G) facility is not considered to be a significant aquifer.

2.2.3 Analytical Results

The following subsections present the summary of results for the RI field investigations at Site 04-PDA. Complete soil and groundwater analytical results for 2006 and 2007 sample analyses can be found in **Appendix J**.

2.2.3.1 Soil Samples

MACTEC collected surface and subsurface soil samples at twenty explorations (SS-01 through SS-20) to delineate the soil contamination and to supplement the 1993 ENSR and 2003 Nobis data in the PDA. **Figure 2-1** presents the locations of 2006 and 2007 explorations. The majority of explorations were advanced to a total depth of four feet; however, three of the explorations were advanced further (SS-06, SS-07, and SS-09) to evaluate the potential for deeper contamination (**Table 2-1**).

Elevated PID readings and/or petroleum odors were observed in samples from SS-01, -03, -04, -05, -07, -08, -09, -12, -13, and -14 (see **Appendix C**). The 8-12 foot interval from exploration SS-07 and the 4-8 foot interval from SS-09 both had PID readings greater than 100 ppm and a noticeable petroleum odor.

Table 2-5 presents the analytes detected in soil samples collected at Site 04-PDA. The distributions of selected gasoline-related and chlorinated analytes are presented on **Figures 2-7** through **2-12** The following paragraphs present a summary of detected analytes by chemical class.

VOCs

Numerous fuel-related VOCs were detected in soils, including benzene, ethyl benzene, xylenes, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-iso-propyltoluene, fluorobenzene, isopropylbenzene, n-butylbenzene, propylbenzene, sec-butylbenzene, tert-butylbenzene, and naphthalene, (**Table 2-5**). The highest detected concentrations of these fuel-related VOCs were found in the surface soil samples from explorations SS-05, SS-08, SS-09, and SS-10, which are located on the eastern half of the PDA (**Figures 2-7** through **2-10**). The only fuel-related VOCs detected in the surface samples from off-site (north of the fenceline) were from explorations SS-13 and SS-14.

Two soil samples were collected from exploration SS-07, at 1-2 feet and 11-12 feet below the water table. The 11-12 foot sample contained significantly higher concentrations of ethyl benzene and xylenes than the 1-2 foot sample (**Table 2-5**). The only VOC with concentrations exceeding RIDEM GA LC was naphthalene, in explorations SS-01, SS-05, SS-07 (both sample intervals), SS-09, and SS-10. Naphthalene concentrations exceeding the GA LC of 0.8 mg/kg range from 1.91 mg/kg in exploration SS-07 to 9.91 mg/kg in exploration SS-10 (**Figure 2-10**). Naphthalene was detected at off-site locations, SS-13 (0.623 mg/kg) and SS-14 (0.799 mg/kg). VOC concentrations exceeding GA LC have been bounded by explorations around the perimeter of the site, as indicated in **Figures 2-7** through **2-10**. No fuel-related VOC concentrations exceed the RIDEM I/C DEC.

Chlorinated solvents detected in soil samples from the PDA include 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and trichloroethene (TCE) (**Table 2-5**). These solvents were detected in samples from explorations SS-02, SS-05, SS-07, and SS-08 (see **Figures 2-11** and **2-12**). The highest concentrations of chlorinated solvents were detected in the 1-2 foot sample from SS-08, in which cis-1,2-DCE was detected at a concentration of 0.284 mg/kg. Detected chlorinated solvent concentrations do not exceed the RIDEM GA LC or I/C DEC. Chlorinated solvents were not detected in the off-site surface soil samples.

Hydrocarbons (MADEP Methods)

Hydrocarbons detected in PDA soils include 2-methylnaphthalene, acenaphthene, benzo(ghi)perylene, ethyl benzene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, toluene, and xylenes (**Table 2-5**). The highest detected concentrations of these hydrocarbons were found in the surface samples from explorations SS-05, SS-09, and SS-10, which are located on the eastern half of the PDA (**Figure 2-1**); this is consistent with the fuel-related VOC findings discussed above. Naphthalene concentrations exceed the GA LC of 0.8 mg/kg in samples from explorations SS-01, SS-03, SS-05, SS-07, SS-08, SS-09, and SS-10 (**Table 2-5** and **Figure 2-10**). Naphthalene concentrations detected using the MADEP method are generally consistent with those detected using the VOC Method 8260B (see **Table 2-5**). No hydrocarbon concentrations exceeded the RIDEM I/C DEC.

TPH (calculated) concentrations ranged from 67.5 mg/kg in the 2-3 foot sample from SS-06, to 11,576 mg/kg in the 1-2 foot sample from SS-09 (**Table 2-5**). TPH (calculated) concentrations exceed the GA LC of 500 mg/kg in samples from explorations SS-01, SS-03, SS-05, SS-07, SS-08, SS-09, and SS-10. Concentrations of TPH (calculated) also exceed the I/C DEC of 2,500 mg/kg in SS-01, SS-03, SS-05, SS-07, SS-09, and SS-10. However, TPH (calculated) concentrations exceeding GA LC and I/C DEC have been bounded by explorations around the perimeter of the site.

Hydrocarbons (TPH-GRO and TPH-DRO)

Detected TPH-DRO concentrations ranged from 68.5 mg/kg at SS-12 to 2750 mg/kg at SS-14. Detected TPH-GRO concentrations ranged from 1.92 mg/kg at SS-20 to 50.8 mg/kg at SS-13. TPH (calculated) concentrations (based on adding TPH-DRO and TPH-GRO) ranged from 1.92 mg/kg at SS-20 to 2876 mg/kg at SS-14. TPH concentrations exceed the GA LC of 500 mg/kg in samples from explorations SS-13, SS-14, and SS-15 (**Table 2-5**). Concentrations of TPH also exceed the I/C DEC of 2,500 mg/kg in SS-14. However, TPH (calculated) concentrations exceeding GA LC and I/C DEC have been bounded by explorations around the perimeter of the site.

Lead

Lead was detected in all 12 soil samples (10 explorations) from the PDA during the 2006 investigation. Concentrations of lead range from 7.49 mg/kg in the 11-12 foot sample from SS-07, to 124 mg/kg in the 0-1 foot sample from SS-03 (**Table 2-5**). Concentrations of lead in soils at the PDA do not exceed the RIDEM GA LC or I/C DEC. Surface soil samples collected during the 2007 investigation were not analyzed for lead.

2.2.3.2 Groundwater Samples

Ten direct-push groundwater sampling locations were advanced on-site at explorations SS-01 through SS-10, and seven direct-push groundwater sampling locations were advanced off-site at explorations GP-01 through GP-07 (**Figure 2-1**). **Table 2-1** presents the groundwater sampling interval in each of these explorations. The following monitoring wells were also sampled: MW-1, MW-2, MW-8, MW-14, MW-14D, MW-15, MW-15D, MW-20, MW-20D, MW-21, MW-21D, MW-22, MW-22D, and MW-24D. Both direct-push and monitoring well groundwater samples were analyzed for VOCs and lead (total and dissolved) during the 2006 investigation (**Table 2-2**). During the 2007 investigation, direct-push groundwater samples were analyzed for VOCs and lead (total and dissolved), and groundwater samples were analyzed for VOCs only.

Review of the Site 04 groundwater data reveals that chlorinated solvents and gasoline/fuel-related constituents are present in shallow groundwater beneath the PDA (see **Table 2-6**, explorations SS-01 through SS-10); however, the chlorinated solvents are not detected in the deeper overburden groundwater.

Slightly upward vertical hydraulic gradients in the vicinity of the PDA support the lack of chlorinated solvents at depth beneath the PDA. In addition, the continuous nature of the gasoline-related groundwater plume from Site 05 to the deep overburden and downgradient to the north beneath the PDA support the interpretation that the deep overburden groundwater beneath and immediately downgradient of the PDA is not impacted by PDA contaminants, and should be considered part of the Site 05 groundwater flow regime. Therefore, any groundwater samples with bottom depths greater than 12 feet bgs are considered part of the Site 05 groundwater flow regime, and are discussed in the Site 05 - Former Gasoline UST Site Investigation Report (KEMRON/MACTEC, 2007b).

Table 2-6 presents the analytes detected in direct-push and monitoring well groundwater samples collected at Site 04-PDA. The distribution of these detected analytes is presented on **Figures 2-13** through **2-20**. The following paragraphs present a summary of detected analytes by chemical class.

VOCs

Numerous fuel-related VOCs were detected in shallow (0-12 feet bgs) groundwater, including 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethyl benzene, naphthalene, xylenes, and toluene (**Table 2-6**), which are the same group of analytes detected in PDA soils. The highest detected concentrations of these fuel-related VOCs were found in direct-push exploration SS-08 and monitoring well MW-14. The VOCs benzene and naphthalene were detected in groundwater at concentrations exceeding RIDEM GA GO (**Table 2-6**). Benzene concentrations exceeded the GA GO of 0.005 mg/L in direct-push explorations SS-01 (0.00541 mg/L) and SS-08 (0.00821 mg/L), and the following monitoring wells:

- MW-14 (0.02 mg/L 2006 investigation, and 0.202 mg/L 2007 investigation)
- MW-21 (0.0256 mg/L)

Naphthalene concentrations in groundwater exceeded the GA GO of 0.02~mg/L in direct-push explorations SS-01 (0.031 mg/L), SS-07 (0.0225 mg/L), SS-08 (0.159 mg/L), SS-09 (0.0607 mg/L), and SS-10 (0.104 mg/L).

Chlorinated solvents detected in groundwater samples from the PDA included 1,1-dichloroethane, 1,2-dichlorobenzene, 1,2-dichloroethane, 1,3-dichloropropane, chlorobenzene, chloroethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride (**Table 2-6**). These solvents were detected in samples from explorations SS-01, and SS-05 through SS-10, with the highest concentrations detected in SS-08. Detected chlorinated solvent concentrations did not exceed RIDEM GA GO.

Lead

Total (unfiltered sample) lead was detected in all 10 direct-push explorations on-site (SS-01 through SS-10), 4 direct-push explorations off-site (GP-03, GP-04, GP-05, and GP-07), and monitoring wells MW-14 and MW-15 sampled during the 2006 investigation (lead was not sampled for in the monitoring wells during the 2007 investigation), at concentrations ranging from 0.0011 mg/L (GP-03) to 2.26 mg/L (SS-01) (**Table 2-6**).

Filtered sample lead concentrations were markedly lower, and were detected in twelve out of the fifteen groundwater samples in the 2006 investigation. Lead in filtered samples was not detected in samples from any of the seven direct-push explorations (GP-01 through GP-07) in the 2007 investigation. Concentrations of detected dissolved lead in filtered samples ranged from 0.00276 mg/L (MW-2) to 0.116 mg/L (SS-06), and exceed the GA GO of 0.015 mg/L in MW-15, SS-03, SS-05, and SS-06 (see **Figure 2-5**). Concentrations of lead in the filtered groundwater samples are significantly lower than those in the

unfiltered samples, suggesting that the lead detected in the unfiltered samples is largely attributable to suspended solids.

2.2.4 Site 04 - PDA Summary of Findings

<u>Soil</u>: Field observations and analytical data indicate that surface and subsurface soils at the PDA have been impacted by past site activities. Vadose zone soils contain naphthalene concentrations exceeding the GA LC (0.8 mg/kg). TPH concentrations in soil exceed the GA LC of 500 mg/kg and the I/C DEC of 2,500 mg/kg. Chlorinated VOCs were detected in vadose zone soils, but concentrations do not exceed RIDEM I/C DEC or GA LC. Concentrations of all analytes exceeding RIDEM I/C DEC and/or GA LC have been bounded by explorations around the perimeter of the site. Analytes and concentrations in the PDA soils are consistent with findings presented in Table 5.2 of the 2004 Nobis RI Report for AOC/Source 10 (Nobis, 2004). The presence of fuel-related and chlorinated solvent VOCs in near-surface soils above the water table indicate that the area was used at some point in the past to dispose of waste and/or raw fuels and solvents. Detection of these VOCs in soils below the water table are likely sue to transport via groundwater from Site 05 - Former Gasoline UST.

Groundwater: Detected constituents in shallow groundwater beneath the PDA are generally consistent with those found in soils at this site, primarily fuel-related and chlorinated VOCs. Benzene, naphthalene, and lead (filtered and unfiltered samples) concentrations in shallow (0-12 feet bgs) groundwater from direct-push and monitoring well samples exceed the RIDEM GA GO. Unfiltered lead sample concentrations are likely attributable to suspended solids. Concentrations of benzene, ethyl benzene, and xylenes in monitoring well MW-8 are consistent with those reported in Table 5.3 of the 2004 Nobis RI Report (Nobis, 2004); however, concentrations of toluene are significantly lower - 0.26 mg/L in 2004 versus 0.00283 mg/L in 2006. Fuel-related constituents and chlorinated VOCs detected in groundwater are likely attributable to release(s) at the PDA surface.

Table 2-1 Summary of Remedial Investigation Direct-Push Explorations Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

Site No.	Media	Loc Name	Exploration Method	Field Completion Date	Total Depth (ft bgs)	Number of Analytical Samples Collected
04	SOIL	SS-01	GeoProbe TM	1/19/2006	4	1
04	SOIL	SS-02	GeoProbe TM	1/18/2006	4	1
04	SOIL	SS-03	GeoProbe TM	1/18/2006	4	1
04	SOIL	SS-04	GeoProbe TM	1/19/2006	4	1
04	SOIL	SS-05	GeoProbe TM	1/19/2006	4	1
04	SOIL	SS-05	GeoProbe TM	1/19/2006	4	1
04	SOIL	SS-07	GeoProbe TM	1/25/2006	12	2
04	SOIL	SS-07 SS-08	GeoProbe TM	1/19/2006	4	1
04	SOIL	SS-08	GeoProbe TM	1/24/2006	12	1
04	SOIL	SS-10	GeoProbe TM	1/25/2006	4	1
04	SOIL	SS-10 SS-11	GeoProbe TM	5/10/2007	1	1
04	SOIL	SS-11 SS-12	GeoProbe TM	5/10/2007	2	1
04	SOIL	SS-12 SS-13	GeoProbe TM	5/10/2007	2	1
04	SOIL	SS-13 SS-14	GeoProbe TM		2	1
	SOIL			5/10/2007		
04		SS-15	GeoProbe TM	5/10/2007	2	1
04	SOIL	SS-16	GeoProbe TM	5/10/2007	1	1
04	SOIL	SS-17	GeoProbe TM	5/11/2007	2	1
04	SOIL	SS-18	GeoProbe TM	5/11/2007	1	1
04	SOIL	SS-19	GeoProbe TM	5/11/2007	2	1
04	SOIL	SS-20	GeoProbe TM	5/11/2007	1	1
04	GW	SS-01	GeoProbe TM	1/19/2006	4	1
04	GW	SS-02	GeoProbe TM	1/18/2006	4	1
04	GW	SS-03	GeoProbe TM	1/18/2006	4	1
04	GW	SS-04	$GeoProbe^{TM}$	1/19/2006	4	1
04	GW	SS-05	$GeoProbe^{TM}$	1/19/2006	4	1
04	GW	SS-06	$GeoProbe^{TM}$	1/19/2006	4	1
04	GW	SS-07	$GeoProbe^{TM}$	1/19/2006	12	1
04	GW	SS-08	$GeoProbe^{TM}$	1/20/2006	4	1
04	GW	SS-09	$GeoProbe^{TM}$	1/26/2006	12	1
04	GW	SS-10	GeoProbe TM	1/26/2006	4	1
04	GW	GP-01	$GeoProbe^{TM}$	5/17/2007	16	2
04	GW	GP-02	$GeoProbe^{TM}$	5/17/2007	16	2
04	GW	GP-03	$GeoProbe^{TM}$	5/9/2007	5	1
04	GW	GP-04	$GeoProbe^{TM}$	5/9/2007	7.2	1
04	GW	GP-05	$GeoProbe^{TM}$	5/8/2007	8	1
04	GW	GP-06	$GeoProbe^{TM}$	5/8/2007	7.2	1
04	GW	GP-07	$GeoProbe^{TM}$	5/9/2007	8.7	1

NOTES:

bgs - below ground surface

ft - feet

GW - groundwater

Table 2-2 Summary of Remedial Investigation Explorations and Analyses Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

								Analysis/Method						
Site No.	Media	Loc Name	Field Sample Id	Sample Collection Method	Field Sample Date	Top Depth (ft,bgs)	Bottom Depth (ft,bgs)	VOCs /8260B	SVOCs /8270C Modified	MADEP EPH	MADEP VPH	GRO /8015M	DRO /8015M	Lead /6020
04	SOIL	SS-01	RI22-SBS0102	GeoProbe TM	1/19/2006	1	2	X		X	X			X
04	SOIL	SS-02	RI22-SBS0202	GeoProbe TM	1/18/2006	1	2	X		X	X			X
04	SOIL	SS-03	RI22-SBS0301	GeoProbeTM	1/18/2006	0	1	X		X	X			X
04	SOIL	SS-04	RI22-SBS0402	GeoProbe TM	1/19/2006	1	2	X		X	X			X
04	SOIL	SS-05	RI22-SBS0502	GeoProbe TM	1/18/2006	1	2	X		X	X			X
04	SOIL	SS-06	RI22-SBS0601	GeoProbe™	1/19/2006	0	1	X		X	X			X
04	SOIL	SS-06	RI22-SBS0603	GeoProbe TM	1/19/2006	2	3	X		X	X			X
04	SOIL	SS-07	RI22-SBS0702	GeoProbe TM	1/19/2006	1	2	X		X	X			X
04	SOIL	SS-07	RI22-SBS0711	GeoProbe TM	1/25/2006	10	11	X		X	X			X
04	SOIL	SS-08	RI22-SBS0802	GeoProbe TM	1/19/2006	1	2	X		X	X			X
04	SOIL	SS-09	RI22-SBS0902	GeoProbe TM	1/24/2006	1	2	X		X	X			X
04	SOIL	SS-10	RI22-SBS1002	GeoProbe TM	1/25/2006	1	2	X		X	X			X
04	SOIL	SS-11	RI22-SSS1100	GeoProbe TM	5/10/2007	0	1	X				X	X	
04	SOIL	SS-12	RI22-SSS1201	GeoProbe TM	5/10/2007	1	2	X				X	X	
04	SOIL	SS-13	RI22-SSS1301	GeoProbe TM	5/10/2007	1	2	X				X	X	
04	SOIL	SS-14	RI22-SSS1401	GeoProbe TM	5/10/2007	1	2	X				X	X	
04	SOIL	SS-15	RI22-SSS1501	GeoProbe TM	5/10/2007	1	2	X				X	X	
04	SOIL	SS-16	RI22-SSS1600	GeoProbe TM	5/10/2007	0	1	X				X	X	
04	SOIL	SS-17	RI22-SSS1701	GeoProbe TM	5/11/2007	1	2	X				X	X	
04	SOIL	SS-18	RI22-SSS1800	GeoProbe TM	5/11/2007	0	1	X				X	X	
04	SOIL	SS-19	RI22-SSS1901	GeoProbe TM	5/11/2007	1	2	X				X	X	
04	SOIL	SS-20	RI22-SSS2000	GeoProbe TM	5/11/2007	0	1	X				X	X	
04	GW	SS-01	RI22-GWS0101	GeoProbe TM	1/19/2006	1	4	X						Y
04	GW	SS-02	RI22-GWS0201	GeoProbe TM	1/18/2006	1	4	X						Y
04	GW	SS-03	RI22-GWS0301	GeoProbe TM	1/18/2006	0.3	4	X						Y
04	GW	SS-04	RI22-GWS0401	GeoProbe TM	1/19/2006	2	4	X						Y
04	GW	SS-05	RI22-GWS0501	GeoProbe TM	1/19/2006	0.6	4	X						Y
04	GW	SS-06	RI22-GWS0601	GeoProbe TM	1/19/2006	1.8	4	X						Y
04	GW	SS-07	RI22-GWS0701	GeoProbe TM	1/19/2006	0.4	4	X						Y
04	GW	SS-08	RI22-GWS0801	GeoProbe TM	1/19/2006	3.5	4	X						Y
04	GW	SS-08	RI22-GWS0801	GeoProbe TM	1/20/2006	3.5	4	X						Y
04	GW	SS-09	RI22-GWS0901	GeoProbe TM	1/26/2006	2	12	X						Y
04	GW	SS-10	RI22-GWS1001	GeoProbe TM	1/26/2006	1	4	X						Y
04	GW	MW-1	RI22-GWSMW101	Mon. Well	1/27/2006	10	20	X						Y
04	GW	MW-2	RI22-GWSMW201	Mon. Well	1/30/2006	9	19	X						Y
04	GW	MW-8	RI22-GWSMW801	Mon. Well	1/30/2006	6	16	X						Y
04	GW	MW-14	RI22-GWSMW1401	Mon. Well	1/30/2006	2	12	X						Y
04	GW	MW-15	RI22-GWSMW1501	Mon. Well	1/30/2006	2	12	X						Y
04	GW	GP-01	RI 22 GPS 0101	GeoProbe TM	5/8/2007	2.5	7.5	X						Y

Prepared by: PJM 07/30//07 Checked by: DRP 09/05/07

Table 2-2 Summary of Remedial Investigation Explorations and Analyses Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

								Analysis/Method						
Site No.	Media	Loc Name	Field Sample Id	Sample Collection Method	Field Sample Date	Top Depth (ft,bgs)	Bottom Depth (ft,bgs)	VOCs /8260B	SVOCs /8270C Modified	MADEP EPH	MADEP VPH	GRO /8015M	DRO /8015M	Lead /6020
04	GW	GP-01	RI22-GPS0114	GeoProbe TM	5/17/2007	14	16	X						
04	GW	GP-02	RI 22 GPS 0201	GeoProbe TM	5/8/2007	3.7	7.7	X						Y
04	GW	GP-02	RI22-GPS0214	GeoProbe TM	5/17/2007	14	16	X						
04	GW	GP-03	RI22-GPS0301	GeoProbe TM	5/9/2007	3.1	5	X						Y
04	GW	GP-04	RI22-GPS0401	GeoProbe TM	5/9/2007	5.7	7.2	X						Y
04	GW	GP-05	RI 22 GPS 0501	GeoProbe TM	5/8/2007	4	8	X						Y
04	GW	GP-06	RI 22 GPS 0601	GeoProbe TM	5/8/2007	3.6	7.2	X						Y
04	GW	GP-07	RI22-GPS0701	GeoProbe TM	5/9/2007	4.5	8.7	X						Y
04	GW	MW-1	RI22-GWSMW102	Mon. Well	6/26/2007	6	16	X						
04	GW	MW-2	RI22-GWSMW202	Mon. Well	6/26/2007	6	16	X						
04	GW	MW-8	RI22-GWSMW802	Mon. Well	6/27/2007	6	16	X						
04	GW	MW-14	RI22-GWSMW1402	Mon. Well	6/27/2007	2	12	X						
04	GW	MW-14D	RI22-MWS14D01	Mon. Well	5/18/2007	10	20	X						
04	GW	MW-14D	RI23-GWSMW14D02	Mon. Well	6/26/2007	10	20	X						
04	GW	MW-15	RI23-GWSMW1502	Mon. Well	6/26/2007	2	12	X						
04	GW	MW-15D	RI23-GWSMW15D02	Mon. Well	6/25/2007	10.2	15.2	X						
04	GW	MW-20	RI22-GWSM2002	Mon. Well	6/26/2007	2	12	X						
04	GW	MW-20D	RI22-MWS20D01	Mon. Well	5/31/2007	10	20	X						
04	GW	MW-20D	RI23-GWSMW20D02	Mon. Well	6/26/2007	10	20	X						
04	GW	MW-21	RI22-GWSMW2102	Mon. Well	6/26/2007	2	12	X						
04	GW	MW-21D	RI23-GWSMW21D02	Mon. Well	6/26/2007	12.5	17.5	X						
04	GW	MW-22	RI23-GWSMW2202	Mon. Well	6/27/2007	2	12	X						
04	GW	MW-22D	RI23-GWSMW22D02	Mon. Well	6/27/2007	12	17	X						

NOTES:

bgs - below ground surface

Bkgd - background

DRO - diesel range organics

EPH - extractable petroleum hydrocarbons

ft - feet

GRO - gasoline range organics

GW - groundwater

MADEP - Massachussetts Department of Environmental Protection

PID - photoionization detector

SVOCs - semivolatile organic compounds

VOCs - volatile organic compouds

VPH - volatile petroleum hydrocarbons

X - sample collected

Y - unfiltered and filtered (total and dissolved fractions) sample collected

Prepared by: PJM 07/30//07

Checked by: DRP 09/05/07

Table 2-3 Monitoring Well Details Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

Site No.	Location	Co-Located Direct-Push Exploration	Installation Date	Borehole Diameter (inches)	Well Material	Well ID (inches)	Well Screen Slot Size (inches)	Well Screen Length (ft)	Top of Screen (ft,bgs)	Bottom of Screen (ft,bgs)
04	MW-1		1986		Sch. 40 PVC			10	6	16
04	MW-2		1986		Sch. 40 PVC			10	6	16
04	MW-8		3/20/2003	8.5	Sch. 40 PVC	2	0.02	10	6	16
04	MW-14	SS-01	1/24/2006	2	Sch. 40 PVC	1	0.01	10	2	12
04	MW-14D		5/17/2007	7	Sch. 40 PVC	1	0.01	10	10	20
04	MW-15		1/25/2006	2	Sch. 40 PVC	1	0.01	10	2	12
04	MW-15D		6/7/2007	7	Sch. 40 PVC	1	0.01	5	10.2	15.2
04	MW-20		5/16/2007	3	Sch. 40 PVC	1	0.01	10	2	12
04	MW-20D		5/17/2007	2	Sch. 40 PVC	1	0.01	10	10	20
04	MW-21		5/16/2007	3	Sch. 40 PVC	1	0.01	10	2	12
04	MW-21D		6/7/2007	7	Sch. 40 PVC	1	0.01	5	12.5	17.5
04	MW-22		5/16/2007	3	Sch. 40 PVC	1	0.01	10	2	12
04	MW-22D		6/8/2007	7	Sch. 40 PVC	1	0.01	5	12	17
05	MW-24D		6/8/2007	2	Sch. 40 PVC	1	0.01	5	10	15

NOTES

bgs - below ground surface

ft - feet

ID - inside diameter

GW - groundwater

Sch. $40~{\rm PVC}$ - schedule $40~{\rm polyvinyl}$ chloride

Prepared by: PJM 08/23/07 Checked by: DRP 09/05/07

Table 2-4 Groundwater Elevations Sites 04, 05, and 13

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

Well ID	Top of PVC Elevation (ft,MSL)	May 23, 2007 Depth to GW from top of PVC (ft)	June 25, 2007 Depth to GW from top of PVC (ft)	May 23, 2007 Groundwater Elevation (ft,MSL)	June 25, 2007 Groundwater Elevation (ft,MSL)
EW-1	449.11	2.2	5.96	446.91	443.15
EW-3	448.82	2.68	5.72	446.14	443.10
MW-1	449.20	4.39	7.50	444.81	441.70
MW-2	449.78	4.35	7.11	445.43	442.67
MW-3	449.83	4.71	8.08	445.12	441.75
MW-4	450.19	3.33	5.78	446.86	444.41
MW-5	450.15	4.79	7.57	445.36	442.58
MW-6B	449.63	3.5	7.02	446.13	442.61
MW-6D	449.55	5.16	7.94	444.39	441.61
MW-6S	449.15	2.79	6.43	446.36	442.72
MW-7	449.58	3.45	6.70	446.13	442.88
MW-8	449.67	4.36	7.32	445.31	442.35
MW-9	447.60	1.88	4.57	445.72	443.03
MW-10	447.79	3.17	4.98	444.62	442.81
MW-10D	447.60		6.14		441.46
MW-11	449.47	4.08	7.43	445.39	442.04
MW-12	447.04	0.7	2.64	446.34	444.40
MW-13	449.91	3.35	6.04	446.56	443.87
MW-14	449.67	4.48	7.41	445.19	442.26
MW-14D	447.19	2	4.99	445.19	442.20
MW-15	449.98	3.76	7.38	446.22	442.60
MW-15D	447.60		5.21		442.39
MW-16	447.72	2.4	5.36	445.32	442.36
MW-16D	447.45		5.31		442.14
MW-17	447.63	2.17	4.81	445.46	442.82
MW-17D	447.33		4.65		442.68

Prepared by: RP 7/20/2007 Checked by: PJM 7/23/2007

Table 2-4 Groundwater Elevations Sites 04, 05, and 13

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

Well ID	Top of PVC Elevation (ft,MSL)	May 23, 2007 Depth to GW from top of PVC (ft)	June 25, 2007 Depth to GW from top of PVC (ft)	May 23, 2007 Groundwater Elevation (ft,MSL)	June 25, 2007 Groundwater Elevation (ft,MSL)
MW-18	450.42	4.67	7.62	445.75	442.80
MW-18D	448.05		5.01		443.04
MW-19	447.78	2.21	4.75	445.57	443.03
MW-20	447.02	3.28	6.49	443.74	440.53
MW-20D	447.51	3.8	6.87	443.71	440.64
MW-21	446.80	1.91	5.08	444.89	441.72
MW-21D	446.66		4.79		441.87
MW-22	446.61	1.39	4.24	445.22	442.37
MW-22D	446.73		4.35		442.38
MW-23	448.38		5.22		443.16
MW-24D	447.36		6.04		441.32
MW-26D	448.43		5.56		442.87
MW-27	447.25		4.17		443.08
MW-27D	447.44		4.34		443.10

NOTES:

Montioring well PVC elevations surveyed May and June 2007 by ASEC Corp.

PVC - polyvinyl chloride

ft - feet

MSL - mean sea level

			SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-06	SS-07	SS-07	SS-08
			RI22-									
	RIDEM I/C	RIDEM GA	SBS0102	SBS0202	SBS0301	SBS0402	SBS0502	SBS0601	SBS0603	SBS0702	SBS0711	SBS0802
	DEC	LC	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006	1/25/2006	1/19/2006
param_name	(mg/kg)	(mg/kg)	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	0-1 ft	2-3 ft	1-2 ft	10-11 ft	1-2 ft
Phenanthrene	10000		0.724	0.62 U	0.959	0.66 U	1.56	0.56 U	0.68 U	0.561 J	0.565	0.61 U
Pyrene	10000		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.491 J	0.68 U	0.62 U	0.52 U	0.61 U
C11-C22 Aromatics			398	28.4	1240	22.2 J	398	35.1	26 J	154	625	43.7
C11-C22 Aromatics (unadj.)			409	29.2	1240	23.8 J	415	39.5	30.2	162	632	47.9
C19-C36 Aliphatics			2090	40	4410	13.1	758	70.4	15.9	660	1210	182 J
C9-C18 Aliphatics			396	12.4	1770	67.4	4170	15.5	21.4	1360	1860	256 J
TPH (calculated) (mg/kg)	2500	500	3307	81.6	8293	390	10869	125	67.5	2915	3914	782

		ı	20.55	20 :- 1		20.15	20.15	22	22 :- 1	20	20 := 1	00.15
			SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
			RI22-									
	RIDEM I/C	RIDEM GA	SBS0902	SBS1002	SSS1100	SSS1201	SSS1301	SSS1401	SSS1501	SSS1600	SSS1701	SSS1800
	DEC	LC	1/24/2006	1/25/2006	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/11/2007	5/11/2007
param_name	(mg/kg)	(mg/kg)	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	1-2 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft
Volatile Organics (mg/Kg)												
1,1,1-Trichloroethane	10000	11	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
1,2,4-Trimethylbenzene			54.8 J	54.7 J	0.0685 U	0.0783 U	6.83	3.71	0.11	0.0677 U	0.0704 U	0.0443 U
1,3,5-Trimethylbenzene			29.6 J	31.9 J	0.0685 U	0.0783 U	2.63	2.01	0.066 U	0.0677 U	0.0704 U	0.0443 U
2-Butanone	10000		2.99 U	5.59 U	1.71 U	1.96 U	1.99 U	1.81 U	1.65 U	1.69 U	1.76 U	1.11 U
4-iso-Propyltoluene			7.82 J	8.38 J	0.0685 U	0.0783 U	0.263	5.84	0.066 U	0.0677 U	0.0704 U	0.0443 U
Acetone	10000		R	R	1.71 U	1.96 U	1.99 U	1.81 U	1.65 U	1.69 U	1.76 U	1.11 U
Benzene	200	0.2	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
Cis-1,2-Dichloroethene	10000	1.7	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
Ethyl benzene	10000	27	0.537 J	0.579 J	0.0685 U	0.0783 U	0.212	0.103	0.066 U	0.0677 U	0.0704 U	0.0443 U
Isopropylbenzene	10000		1.05 J	1.19 J	0.0685 U	0.0783 U	0.276	0.145	0.066 U	0.0677 U	0.0704 U	0.0443 U
Naphthalene	10000	0.8	9.76 J	9.91 J	0.0685 U	0.0783 U	0.623	0.799	0.316	0.0677 U	0.0704 U	0.0443 U
n-Butylbenzene	12200		14.8 J	18.8 J	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
o-Xylene			1.51 J	1.3 J	0.0685 U	0.0783 U	0.44	0.492	0.066 U	0.0677 U	0.0704 U	0.0443 U
Propylbenzene			4.67 J	4.22 J	0.0685 U	0.0783 U	0.931	0.405	0.066 U	0.0677 U	0.0704 U	0.0443 U
sec-Butylbenzene			3.04 J	3.84 J	0.0685 U	0.0783 U	0.25	0.222	0.066 U	0.0677 U	0.0704 U	0.0443 U
tert-Butylbenzene			0.95 J	1.37 J	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
Toluene	10000	32	0.223 J	2.79 U	0.0685 U	0.0783 U	0.132	0.222	0.066 U	0.0677 U	0.0704 U	0.0443 U
trans-1,2-Dichloroethene	10000	3.3	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
Trichloroethene	520	0.2	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U	0.066 U	0.0677 U	0.0704 U	0.0443 U
Xylene, m/p	520	0.2	2.49 J	1.39 J	0.0003 U	0.0783 U	0.0797 0	0.0726 0	0.000 U	0.0077 U	0.0704 U	0.0443 U
Xylenes, Total	10000	540	2.49 J	1.55 5	0.137 U	0.137 U	1.06	0.449	0.132 U	0.133 U	0.141 U	0.0880 U
•	10000	540			0.206 0	0.235 0	1.06	0.941	0.196 0	0.203 0	0.2110	0.133 0
Inorganics (mg/Kg) Lead	500		23.4	30.3								
	500											
Percent Solids (%)			84.3	84.7								
TPH (mg/Kg)					40.5.11	20.5	205	0750	4470		40.411	00.711
Diesel Range Organics					46.5 U	68.5	625	2750	1170	90	46.4 U	38.7 U
Gasoline Range Organics					1.61 U	4.24	50.8	126	6.02	7.06	1.83 U	1.15 U
VPH (mg/Kg)												
Ethyl benzene	10000	27	0.61 U	0.76 U								
Naphthalene	10000	0.8	6.2	9.95								
o-Xylene			4.71	3.26								
Toluene	10000	32	0.61 U	0.76 U								
Xylene, m/p			2.16	1.11								
C5-C8 Aliphatics			13	16.2								
C5-C8 Aliphatics (unadj.)			13.3	16.3								
C9-C10 Aromatics (unadj.)			550	675								
C9-C12 Aliphatics			318	422								
C9-C12 Aliphatics (unadj.)			875	1100								
EPH (mg/Kg)												
2-Methylnaphthalene	10000		4.69	7.46							İ	
Acenaphthene	10000		0.644	0.778								
Benzo(ghi)perylene	10000		0.58 U	0.465 J								
Fluoranthene	10000		0.58 U	0.57 U								
Fluorene	10000		0.631	1.67								
Naphthalene	10000	0.8	3.33	3.42								

			SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
			RI22-									
	RIDEM I/C	RIDEM GA	SBS0902	SBS1002	SSS1100	SSS1201	SSS1301	SSS1401	SSS1501	SSS1600	SSS1701	SSS1800
	DEC	LC	1/24/2006	1/25/2006	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/11/2007	5/11/2007
param_name	(mg/kg)	(mg/kg)	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	1-2 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft
Phenanthrene	10000		0.471 J	1.43								
Pyrene	10000		0.58 U	0.57 U								
C11-C22 Aromatics			878	596								
C11-C22 Aromatics (unadj.)			888	613								
C19-C36 Aliphatics			4870	808								
C9-C18 Aliphatics			4380	2730								
TPH (calculated) (mg/kg)	2500	500	11576	5942		72.7	676	2876	1176	97.1		

		İ	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-06	SS-07	SS-07	SS-08
			RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	RIDEM I/C	RIDEM GA	SBS0102	SBS0202	SBS0301	SBS0402	SBS0502	SBS0601	SBS0603	SBS0702	SBS0711	SBS0802
	DEC DEC	LC LC	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006	1/25/2006	1/19/2006
norom nome	-	(mg/kg)	1/19/2006 1-2 ft	1/16/2006 1-2 ft	0-1 ft	1/19/2006 1-2 ft	1/16/2006 1-2 ft	0-1 ft	2-3 ft	1/19/2006 1-2 ft	1/25/2006 10-11 ft	1/19/2006 1-2 ft
param_name	(mg/kg)	(mg/kg)	1-2 11	1-2 11	U-1 IL	1-2 11	1-2 11	U-1 IL	2-3 II	1-2 IL	10-1111	1-2 11
Volatile Organics (mg/Kg)	40000	44	0.75.11	0.00000 1	0.00040.11	0.007.11	0.00400.1	0.00500.111	0.0070411	0.00004.11	0.500.11	0.074.11
1,1,1-Trichloroethane	10000	11	0.75 U	0.00309 J	0.00613 U	0.697 U	0.00108 J	0.00533 UJ	0.00764 U	0.00601 U	0.528 U	0.671 U
1,2,4-Trimethylbenzene			8.13	0.00599 U	0.0992 J	8.45	1030	0.00134 J	0.0839 J	20.3 J	15	17.6
1,3,5-Trimethylbenzene	10000		3.56	0.00599 U	0.0576 J	4.59	326	0.00533 U	0.00453 J	11.5 J	6.35	8.01
2-Butanone	10000		R	0.00592 J	0.0154 J	R	0.0646 J	0.0107 UJ	0.0153 U	0.0154 J	1.06 U	R
4-iso-Propyltoluene			0.645 J	0.00599 U	0.0166 J	0.763	56.2 J	0.00533 U	0.00764 U	2.96 J	1.39	1.24
Acetone	10000		R	0.0706	0.0763 J	R	0.195 J	0.0107 UJ	0.0153 U	0.0736 J	R	R
Benzene	200	0.2		0.00599 U	0.00613 U	0.697 U	0.012 J	0.00533 UJ	0.00764 U	0.000927 J	0.528 U	0.671 U
Cis-1,2-Dichloroethene	10000	1.7	0.75 U	0.00599 U	0.00613 U	0.697 U	0.0135 J	0.00533 UJ	0.00764 U	0.0121 J	0.528 U	0.284 J
Ethyl benzene	10000	27	1.05	0.00599 U	0.00334 J	0.697 U	0.105 J	0.00533 U	0.00764 U	0.0108 J	2.44	0.546 J
Isopropylbenzene	10000		0.305 J	0.00599 U	0.00601 J	0.455 J	25 J	0.00533 U	0.00792 J	0.0586 J	0.916	0.43 J
Naphthalene	10000	0.8	1.92	0.012 U	0.0265 J	0.106 J	7.03 J	0.00445 J	0.00771 J	1.91 J	2.17	0.56 J
n-Butylbenzene			1.26	0.00599 U	0.0408 J	0.695 J	53 J	0.00533 U	0.00136 J	4.53 J	3.09	1.7
o-Xylene			2.12	0.00599 U	0.00806 J	0.697 U	29.6 J	0.00533 U	0.00112 J	0.0374 J	2.45	0.907
Propylbenzene			0.908	0.00599 U	0.0154 J	1.37	77.5 J	0.00533 U	0.00934 J	0.215 J	2.42	1.53
sec-Butylbenzene			0.393 J	0.00599 U	0.0181 J	0.567 J	34 J	0.00533 U	0.00345 J	0.133 J	0.998	0.56 J
tert-Butylbenzene			0.75 U	0.00599 U	0.00164 J	0.0763 J	4.8 J	0.00533 U	0.00175 J	0.0328 J	0.153 J	0.127 J
Toluene	10000	32	0.0916 J	0.00599 U	0.000909 J	0.697 U	1.12 J	0.00533 U	0.00101 J	0.00969 J	0.528 U	0.462 J
trans-1,2-Dichloroethene	10000	3.3	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U	0.528 U	0.0947 J
Trichloroethene	520	0.2	0.75 U	0.000853 J	0.00613 U	0.697 U	0.00209 J	0.00533 UJ	0.00764 U	0.00601 U	0.528 U	0.671 U
Xylene, m/p			3.36	0.00599 U	0.00443 J	0.072 J	8.59 J	0.00533 U	0.000823 J	0.0615 J	7.78	2
Xylenes, Total	10000	540										
Inorganics (mg/Kg)												
Lead	500		15.1 J	43.5	124	16.7 J	10.5	86.1 J	16.7 J	16 J	7.49	12.6 J
Percent Solids (%)			84.4	77.1	83.6	75.7	80.8	84.8	72.1	78.2	91.4	80.7
TPH (mg/Kg)						-				-		
Diesel Range Organics												
Gasoline Range Organics												
VPH (mg/Kg)												
Ethyl benzene	10000	27	1.68	0.7 U	0.54 U	0.78 U	0.8 U	0.67 U	0.9 U	0.62 U	0.56 U	1.2
Naphthalene	10000	0.8	4.51	0.7 U	4.37	0.78 U	11.3	0.67 U	0.9 U	2.76	1.05	1.71
o-Xylene	10000	0.0	1.89	0.7 U	1.89	0.78 U	34.1	0.67 U	0.9 U	0.434 J	1.26	0.919
Toluene	10000	32		0.7 U	0.54 U	0.78 U	0.694 J	0.67 U	0.9 U	0.62 U	0.56 U	3.19
Xylene, m/p	10000	- OZ	3.37	0.7 U	0.458 J	0.78 U	7.95	0.67 U	0.9 U	0.572 J	2.18	2.47
C5-C8 Aliphatics			13 U	14 U	17.8	16 U	85.7	13 U	18 U	12 U	11.8	14 U
C5-C8 Aliphatics (unadj.)			13 U	14 U	17.0	16 U	86.4	13 U	18 U	12 U	11.9	14 U
C9-C10 Aromatics (unadj.)			156	14 U	306	86.4	1710	13 U	18 U	242	69.1	120
C9-C10 Afornatics (unadj.)			92.6	14 U	241	112	1980	13 U	18 U	242	58.9	52.1
C9-C12 Aliphatics (unadj.)			256	14 U	549	112	3730	13 U	18 U	491	131	176
			236	14 U	549	199	3/30	13 U	10 U	491	131	176
EPH (mg/Kg)	10000		5.19	0.62 U	2.05	0.66 U	6.75	0.56 U	0.68 U	4.00	3.7	0.61 U
2-Methylnaphthalene			0.734		0.59 U					1.96		
Acenaphthene	10000			0.62 U		0.66 U	0.6 U	0.56 U	0.68 U	0.498 J	0.603	0.61 U
Benzo(ghi)perylene	10000		0.558 J	0.62 U	1.31	0.687	0.625	0.823	2.27	1.84	0.52 U	1.35
Fluoranthene	10000		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.642	0.68 U	0.62 U	0.52 U	0.61 U
Fluorene	10000		0.806	0.62 U	1.08	0.66 U	1.47	0.56 U	0.68 U	0.62 U	0.63	0.61 U
Naphthalene	10000	0.8	1.63 J	0.62 U	0.474 J	0.66 UJ	4.8	0.56 UJ	0.68 UJ	2.02 J	1.17	1.85 J

			SS-19	SS-20
			RI22-	RI22-
	RIDEM I/C	RIDEM GA	SSS1901	SSS2000
	DEC	LC	5/11/2007	5/11/2007
param_name	(mg/kg)	(mg/kg)	1-2 ft	0-1 ft
Volatile Organics (mg/Kg)				
1,1,1-Trichloroethane	10000	11	0.0762 U	0.0487 U
1,2,4-Trimethylbenzene			0.0762 U	0.0487 U
1,3,5-Trimethylbenzene			0.0762 U	0.0487 U
2-Butanone	10000		1.9 U	1.22 U
4-iso-Propyltoluene			0.0762 U	0.0487 U
Acetone	10000		1.9 U	1.22 U
Benzene	200	0.2	0.0762 U	0.0487 U
Cis-1,2-Dichloroethene	10000	1.7	0.0762 U	0.0487 U
Ethyl benzene	10000	27	0.0762 U	0.0487 U
Isopropylbenzene	10000		0.0762 U	0.0487 U
Naphthalene	10000	0.8	0.0762 U	0.0487 U
n-Butylbenzene			0.0762 U	0.0487 U
o-Xylene			0.0762 U	0.0487 U
Propylbenzene			0.0762 U	0.0487 U
sec-Butylbenzene			0.0762 U	0.0487 U
tert-Butylbenzene			0.0762 U	0.0487 U
Toluene	10000	32	0.0762 U	0.0487 U
trans-1,2-Dichloroethene	10000	3.3	0.0762 U	0.0487 U
Trichloroethene	520	0.2	0.0762 U	0.0487 U
Xylene, m/p			0.152 U	0.0973 U
Xylenes, Total	10000	540	0.228 U	0.146 U
Inorganics (mg/Kg)				
Lead	500			
Percent Solids (%)				
TPH (mg/Kg)				
Diesel Range Organics			47.7 U	40.8 U
Gasoline Range Organics			2.22 U	1.92
VPH (mg/Kg)				
Ethyl benzene	10000	27		
Naphthalene	10000	0.8		
o-Xylene				
Toluene	10000	32		
Xylene, m/p				
C5-C8 Aliphatics				
C5-C8 Aliphatics (unadj.)				
C9-C10 Aromatics (unadj.)				
C9-C12 Aliphatics				
C9-C12 Aliphatics (unadj.)				
EPH (mg/Kg)				
2-Methylnaphthalene	10000			
Acenaphthene	10000			
Benzo(ghi)perylene	10000			
Fluoranthene	10000			
Fluorene	10000			
Naphthalene	10000	0.8		

			SS-19	SS-20
			RI22-	RI22-
	RIDEM I/C	RIDEM GA	SSS1901	SSS2000
	DEC	LC	5/11/2007	5/11/2007
param_name	(mg/kg)	(mg/kg)	1-2 ft	0-1 ft
Phenanthrene	10000			
Pyrene	10000			
C11-C22 Aromatics				
C11-C22 Aromatics (unadj.)				
C19-C36 Aliphatics				
C9-C18 Aliphatics				
TPH (calculated) (mg/kg)	2500	500		1.92

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

NOTES:

Bold value indicates detection of the analyte

Concentration Exceeds RIDEM GA LC

Concentration Exceeds RIDEM I/C DEC and GA LC

Total Petroleum Hydrocarbons (calculated) results were calculated for 1) MADEP Methods by summing the detected results of C5-C8 Aliphatics (unadj.), C9-C10 Aromatics (unadj.), C9-C12 Aliphatics (unadj.), C11-C22 Aromatics (unadj.), C19-C36 Aliphatics, and C9-C18 Aliphatics, and 2) GRO-DRO results by summing the GRO and DRO values

ft - feet (below ground surface)

GA - GA classified aquifer

I/C DEC - Industrial/Commercial Direct Exposure Criteria

J - result is estimated

LC - leachability criteria

RIDEM - Rhode Island Dept. of Environmental Management

MG/KG - milligrams per kilogram

MG/L - milligrams per liter

TPH - total petroleum hydrocarbons

U - not detected

	Ī	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10
		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	RIDEM	GWS0101	GWS0201	GWS0301	GWS0401	GWS0501	GWS0601	GWS0701	GWS0801	GWS0901	GWS1001
	GA GO	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006	1/19/2006	1/20/2006	1/26/2006	1/26/2006
Analyte	(mg/L)	1-4 ft	1-4 ft	0.3-4 ft	2-4 ft	0.6-4 ft	1.8-4 ft	0.4-4 ft	3.5-4 ft	2-12 ft	1-4 ft
Volatile Organics (mg/L)											
1,1-Dichloroethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000403 J	0.001 U	0.0204	0.00382	0.000846 J
1,2,4-Trimethylbenzene		0.0562	0.00184	0.0972	0.0519	0.241	0.394	0.109	0.533	0.27	0.352
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000187 J	0.001 U	0.001 U
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000396 J	0.001 U
1,3,5-Trimethylbenzene		0.0221	0.001 U	0.0258	0.0163	0.137	0.112	0.0535	0.149	0.124	0.196
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
2-Butanone		0.00393 J	0.01 U	0.01 U	0.01 U	0.01 U	0.0049 J	0.01 U	0.0081 J	R	0.00702 J
4-iso-Propyltoluene		0.00318	0.001 U	0.00428	0.00133	0.017	0.00823	0.00801	0.0129	0.0139	0.0223
Acetone		0.0174 J	R	R	0.00967 J	0.00449 J	0.0174 J	0.0082 J	0.0311 J	0.0145 J	0.0363 J
Benzene	0.005	0.00541	0.001 U	0.001 U	0.00115	0.000398 J	0.0049	0.000144 J	0.00821	0.00491	0.0013
Chlorobenzene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.000161 J	0.00026 J	0.001 U	0.001 U	0.001 U	0.001 U
Chloroethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000692 J	0.001 U	0.0173	0.00212	0.00175
Cis-1,2-Dichloroethene	0.07	0.000332 J	0.001 U	0.001 U	0.001 U	0.000593 J	0.00151	0.00109	0.00514	0.00183	0.00163
Ethyl benzene	0.7	0.0262	0.001 U	0.00074 J	0.000807 J	0.00161	0.00175	0.000778 J	0.103	0.0104	0.00942
Isopropylbenzene		0.00288	0.001 U	0.00249	0.00409	0.015	0.0127	0.00287	0.0243	0.0094	0.00999
Naphthalene	0.02	0.031	0.001 U	0.0028	0.001 U	0.00866	0.0023	0.0225	0.159	0.0607	0.104
n-Butylbenzene		0.00343	0.001 U	0.00498	0.000728 J	0.0144	0.00543	0.0116	0.0192	0.019	0.0306
o-Xylene		0.0213	0.001 U	0.00186	0.001 U	0.0217	0.00391	0.00254	0.161	0.025	0.0301
Propylbenzene		0.00558	0.001 U	0.00672	0.00441	0.0329	0.0183	0.00778	0.0476	0.0237	0.0238
p-Xylene											
sec-Butylbenzene		0.00124	0.001 U	0.00274	0.0012	0.00911	0.00433	0.00308	0.00772	0.00616	0.0084
t-Butyl alcohol		0.1 U	0.0582 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 UJ
tert-Butylbenzene		0.001 U	0.001 U	0.001 U	0.000558 J	0.00216	0.00138	0.00101	0.00192	0.00212	0.00387
Toluene	1	0.00414	0.001 U	0.001 U	0.001 U	0.00124	0.000991 J	0.000566 J	0.127	0.015	0.00611
trans-1,2-Dichloroethene	0.1	0.000366 J	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000732 J	0.001 U	0.001 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000252 J	0.001 U	0.00142	0.001 U	0.001 U
Xylene, m/p		0.0721	0.001 U	0.00346	0.0013	0.00666	0.00902	0.00373	0.344	0.0408	0.0359
Xylenes, Total	10										
Metals, Total (mg/L)											
Lead	0.015	2.26	0.194	0.335	1.27	1.18	0.824	1.05	0.176	0.142 J	0.924 J
Metals, Dissolved (mg/L)											
Lead	0.015	0.00682	0.00276	0.0585	0.00468	0.0171	0.116	0.00339	0.00807	0.00874	0.00817 J

		GP-01	GP-02	GP-05	GP-06	GP-01	GP-02	GP-03	GP-04	GP-07	MW-1
		RI 22 GPS	RI 22 GPS	RI 22 GPS	RI 22 GPS	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	RIDEM	0101	0201	0501	0601	GPS0114	GPS0214	GPS0301	GPS0401	GPS0701	GWSMW101
	GA GO	5/8/2007	5/8/2007	5/8/2007	5/8/2007	5/17/2007	5/17/2007	5/9/2007	5/9/2007	5/9/2007	1/27/2006
Analyte	(mg/L)	2.5-7.5 ft	3.7-7.7 ft	4-8 ft	3.6-7.2 ft	14-16 ft	14-16 ft	3.1-5 ft	5.7-7.2 ft	4.5-8.7 ft	10-20 ft
Volatile Organics (mg/L)											
1,1-Dichloroethane		0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
1,2,4-Trimethylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloroethane	0.005	0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
1,3,5-Trimethylbenzene		0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
2-Butanone		R	R	R	R	R		R	R	R	R
4-iso-Propyltoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Acetone		R	R		R	R		R	R	R	R
Benzene	0.005	0.0019	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloroethane		0.002 U	0.002 U		0.002 U	0.002 U		0.002 U	0.002 U	0.002 U	0.001 U
Cis-1,2-Dichloroethene	0.07	0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Ethyl benzene	0.7	0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Isopropylbenzene		0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Naphthalene	0.02	0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
n-Butylbenzene		0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
o-Xylene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0129	0.001 U	0.001 U	0.001 U	0.001 U
Propylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0041	0.001 U	0.001 U	0.001 U	0.001 U
p-Xylene											
sec-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0017	0.001 U	0.001 U	0.001 U	0.001 U
t-Butyl alcohol											0.1 UJ
tert-Butylbenzene		0.001 U	0.001 U		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Toluene	1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U
Xylene, m/p		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		0.002 U	0.002 U	0.002 U	0.001 U
Xylenes, Total	10	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.0431	0.003 U	0.003 U	0.003 U	
Metals, Total (mg/L)											
Lead	0.015		0.01 U	0.018	0.01 U			0.011	0.024	0.014	0.000429 J
Metals, Dissolved (mg/L)											
Lead	0.015	0.01 U	0.01 U	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.001 U

		MW-1	MW-2	MW-2	MW-8	MW-8	MW-14	MW-14	MW-14D	MW-14D
		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI23-
	RIDEM	GWSMW102	GWSMW201	GWSMW202	GWSMW801	GWSMW802	GWSMW1401	GWSMW1402	MWS14D01	GWSMW14D02
	GA GO	6/26/2007	1/30/2006	6/26/2007	1/30/2006	6/27/2007	1/30/2006	6/27/2007	5/18/2007	6/26/2007
Analyte	(mg/L)	6-16 ft	6-16 ft	6-16 ft	6-16 ft	6-16 ft	2-12 ft	2-12 ft	10-20 ft	10-20 ft
Volatile Organics (mg/L)										
1,1-Dichloroethane		0.001 U	0.001 U	0.001 U		0.001 U		0.001 U	0.001 U	0.001 U
1,2,4-Trimethylbenzene		0.001 U	0.001 U	0.001 U		0.0016		0.0034	0.0616	0.0035
1,2-Dichlorobenzene	0.6		0.001 U	0.001 U		0.001 U		0.001 U	0.001 U	0.001 U
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U		0.001 UJ	0.001 U	0.001 UJ	0.001 U	0.001 U
1,3,5-Trimethylbenzene		0.001 U	0.001 U	0.001 U		0.0018		0.004	0.0141	0.0047
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001	0.001 U	0.001 U
2-Butanone		R	R	R		R	R		R	R
4-iso-Propyltoluene		0.001 U	0.001 U	0.001 U		0.001 U	0.00118		0.001 U	0.001 U
Acetone		R	0.00331 J	R		R	0.00318 J	R	R	R
Benzene	0.005		0.001 U	0.001 U			0.02		0.756	0.289
Chlorobenzene	0.1	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloroethane		0.002 U	0.001 U	0.002 U	0.001 U	0.002 U		0.002 U	0.002 U	0.002 U
Cis-1,2-Dichloroethene	0.07	0.001 U	0.001 U 0.001 U							
Ethyl benzene	0.7		0.001 U	0.001 U	0.00774	0.0265	0.0162	0.0746	0.143	0.0848
Isopropylbenzene		0.001 U	0.001 U	0.001 U	0.000447 J	0.0018	0.00209	0.004	0.0055	0.0047
Naphthalene	0.02	0.001 U	0.001 U	0.001 U	0.00104	0.0042			0.0152	0.0312
n-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00233	0.001 U	0.001 U	0.001 U
o-Xylene		0.001 U	0.001 U	0.001 U	0.00194	0.009	0.00947	0.0175	0.0132	0.017
Propylbenzene		0.001 U	0.001 U	0.001 U	0.000586 J	0.0033	0.00382		0.0142	0.013
p-Xylene		0.002 U		0.002 U		0.0695		0.0785		0.0739
sec-Butylbenzene		0.001 U	0.001 U	0.001 U		0.001 U			0.001 U	0.001 U
t-Butyl alcohol			0.1 UJ		0.1 UJ		0.1 UJ			
tert-Butylbenzene		0.001 U	0.001 U	0.001 U		0.001 U	0.000305 J	0.001 U	0.001 U	0.001 U
Toluene	1	0.001 U	0.001 U	0.001 U		0.0159			0.0562	0.132
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U		0.001 U		0.001 U	0.001 U	0.001 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylene, m/p			0.001 U		0.00776		0.0391		0.343	
Xylenes, Total	10	0.003 U		0.003 U		0.0785		0.096	0.356	0.0909
Metals, Total (mg/L)										
Lead	0.015		0.0059 J		0.00201 J		0.0173 J			
Metals, Dissolved (mg/L)										
Lead	0.015		0.000397 J		0.001 U		0.001 U			

-		MW-15	MW-15	MW-15D	MW-20	MW-20D	MW-20D	MW-21	MW-21D	MW-22
		RI22-	RI23-	RI23-	RI22-	RI22-	RI23-	RI22-	RI23-	RI23-
	RIDEM	GWSMW1501	GWSMW1502	GWSMW15D02	GWSM2002	MWS20D01	GWSMW20D02	GWSMW2102	GWSMW21D02	GWSMW2202
	GA GO	1/30/2006	6/26/2007	6/25/2007	6/26/2007	5/31/2007	6/26/2007	6/26/2007	6/26/2007	6/27/2007
Analyte	(mg/L)	2-12 ft	2-12 ft	10.2-15.2 ft	2-12 ft	10-20 ft	10-20 ft	2-12 ft	12.5-17.5 ft	2-12 ft
Volatile Organics (mg/L)										
1,1-Dichloroethane		0.001 U	0.001 U	0.001 U		0.001 U		0.001 U	0.001 U	0.001 U
1,2,4-Trimethylbenzene		0.00974	0.0017	0.0315		0.001 U		0.001 U		0.001 U
1,2-Dichlorobenzene	0.6		0.001 U	0.001 U		0.001 U		0.001 U		0.001 U
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U		0.001 U		0.001 UJ	0.001 U	0.001 U
1,3,5-Trimethylbenzene		0.00392	0.001 U	0.0093		0.001 U	0.001 U	0.0031	0.0062	0.001 U
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
2-Butanone		R	R	R		R	R	R	R	R
4-iso-Propyltoluene		0.000667 J	0.001 U	0.0029	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Acetone		0.00328 J	R	R		R	R	R	R	R
Benzene	0.005	0.001 U	0.004	0.38	0.001 U	0.001 U	0.0127	0.0256	0.0954	0.0012
Chlorobenzene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloroethane		0.001 U	0.002 U	0.002 U		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Cis-1,2-Dichloroethene	0.07	0.001 U	0.001 U	0.001 U		0.001 U		0.001 U	0.001 U	0.001 U
Ethyl benzene	0.7	0.00189	0.0016	0.102		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Isopropylbenzene		0.000656 J	0.001 U	0.0093		0.001 U	0.001 U	0.0031	0.0062	0.001 U
Naphthalene	0.02	0.00182	0.001 U	0.0304	0.001 U	0.001 U	0.001 UJ	0.001 U	0.0014	0.001 U
n-Butylbenzene		0.00123	0.001 U	0.001 U		0.001 U		0.001 U	0.0018	0.001 U
o-Xylene		0.00206	0.0019	0.0845		0.001 U		0.001 U	0.001 U	0.001 U
Propylbenzene		0.00154	0.001	0.0189	0.001 U	0.001 U	0.001 U	0.0025	0.008	0.001 U
p-Xylene			0.0036	0.132		0.002 U	0.002 U	0.002 U	0.0038	0.002 U
sec-Butylbenzene		0.000482 J	0.001 U	0.0026	0.001 U	0.001 U	0.001 U	0.002	0.0027	0.001 U
t-Butyl alcohol		0.1 UJ								
tert-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Toluene	1	0.000368 J	0.001 U	0.0805		0.001 U	0.001 U	0.001 U	0.0018	0.001 U
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylene, m/p		0.00618								
Xylenes, Total	10		0.0055	0.216	0.003 U	0.003 U	0.003 U	0.003 U	0.0038	0.003 U
Metals, Total (mg/L)										
Lead	0.015	0.151 J								
Metals, Dissolved (mg/L)										
Lead	0.015	0.0201								

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

		MW-22D
		RI23-
	RIDEM	GWSMW22D02
	GA GO	6/27/2007
Analyte	(mg/L)	12-17 ft
Volatile Organics (mg/L)		
1,1-Dichloroethane		0.001 U
1,2,4-Trimethylbenzene		0.001 U
1,2-Dichlorobenzene	0.6	0.001 U
1,2-Dichloroethane	0.005	0.001 U
1,3,5-Trimethylbenzene		0.001 U
1,3-Dichloropropane		0.001 U
2-Butanone		R
4-iso-Propyltoluene		0.001 U
Acetone		R
Benzene	0.005	0.001 U
Chlorobenzene	0.1	0.001 U
Chloroethane		0.002 U
Cis-1,2-Dichloroethene	0.07	0.001 U
Ethyl benzene	0.7	0.001 U
Isopropylbenzene		0.001 U
Naphthalene	0.02	0.001 U
n-Butylbenzene		0.001 U
o-Xylene		0.001 U
Propylbenzene		0.001 U
p-Xylene		0.002 U
sec-Butylbenzene		0.001 U
t-Butyl alcohol		
tert-Butylbenzene		0.001 U
Toluene	1	0.001 U
trans-1,2-Dichloroethene	0.1	0.001 U
Vinyl chloride	0.002	0.001 U
Xylene, m/p		
Xylenes, Total	10	0.003 U
Metals, Total (mg/L)		
Lead	0.015	
Metals, Dissolved (mg/L)		
Lead	0.015	

NOTES:

Bold value indicates detection of the analyte

Concentration Exceeds RIDEM GA GO

ft - feet (below ground surface)

GA - GA classified aquifer

GO - Groundwater Objectives

J - result is estimated

MG/L - milligrams per liter

R - rejected result

RIDEM - Rhode Island Dept. of Environmental

Management

U - not detected

Section 3.0 Baseline Risk Assessment

This Baseline Risk Assessment for Site 04 - PDA, at the AMSA 68 (G) has been preformed in accordance with CERCLA, the NCP, and applicable USEPA guidance. Section 3.1 presents the Human Health Risk Assessment (HHRA) and Section 3.2 provides an Ecological Risk Evaluation.

3.1 Human Health Risk Assessment

This section provides the technical approach and results for the Human Health Risk Assessment (HHRA) performed in support of the RI for Site 04. The purpose of the risk assessment is to quantify the human health risks associated with potential exposures to site-related constituents under current and reasonably foreseeable future land use conditions, in the absence of any remedial actions.

The applicable legal requirement for the HHRA is CERCLA, as amended. The applicable regulatory requirement is the NCP, 40 CFR Part 300. The HHRA is performed using EPA CERCLA guidance for risk assessment, including the following USEPA risk assessment guidance and directives:

- Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part A) (RAGS) (USEPA, 1989)
- Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors (OSWER Directive 9285.6-03.; USEPA, 1991)
- Guidance for Data Usability in Risk Assessments (USEPA, 1992)
- USEPA Region I Risk Updates, Number 2 (USEPA, 1994a)
- USEPA Region I Risk Updates, Number 3 (USEPA, 1995a)
- USEPA Region I Risk Updates, Number 4 (USEPA, 1996a)
- USEPA Region I Risk Updates, Number 5 (USEPA, 1999a)
- Exposure Factors Handbook (USEPA, 1997)
- Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part D) (RAGS) (USEPA, 2001)
- Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA, 2002a)
- Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (USEPA, 2002b)
- Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (USEPA, 2002c)
- Human Health Toxicity Values in Superfund Risk Assessments (OSWER No. 9285.7-53, December 2003)
- Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part E) (RAGS) (USEPA, 2004a)

The HHRA is organized into four sections (hazard identification, exposure assessment, toxicity assessment, and risk characterization), and includes supporting documentation for exposure point concentration and modeling calculations in **Appendix K**.

The hazard identification presents a summary of the analytical data that are used in the HHRA and the chemicals selected for evaluation in the risk assessment (i.e., the chemicals of potential concern [COPCs]). The exposure assessment provides information about the activities that may occur under the current and anticipated future land uses of the Site, the pathways by which people engaged in those activities could be exposed to COPCs at the Site, and quantifies the exposures associated with those pathways. The toxicity assessment provides information about the potential toxicity and dose-response profiles of the COPCs. The risk characterization combines the dose-response information and quantitative exposure estimates to provide quantitative estimates of risk for cancer and systemic toxic effects. In order to provide additional perspective for risk management decision-making, this section also contains an analysis of the variables that lend the greatest uncertainty and have the greatest potential effect on the quantitative risk estimates.

3.1.1 Hazard Identification

Site Description and Conceptual Site Model

The AMSA 68 (G) Facility is located in the North Central Industrial Park in Smithfield, RI. The facility comprises four acres of fenced property. Two buildings are presently located on the facility property: the Maintenance Building (main building), historically used for field maintenance repairs, direct exchange of repair parts, and automotive, engineering, and signal support; and a water pump house, historically used as a fire-suppression water delivery pump house. The Maintenance Building is still used for maintenance of military vehicles by USARC personnel.

The PDA is an inactive non-regulated disposal area along the property line north of the AMSA building (**Figure 1-3**). Site 04 is located adjacent to the Site 05 (UST) and near the Maintenance Building. The area investigated in support of the Site 04 RI is covered with grass and weeds that are occasionally mowed. The groundwater beneath Site 04 is relatively shallow (3 feet bgs), and is classified as GB by the State of Rhode Island. GB groundwater is not considered to be current or potential drinking water. The facility receives municipally-supplied potable water.

Soil and groundwater data collected by MACTEC during the RI performed in 2006 and 2007 indicate that constituents typical of gasoline releases, including BTEX, aliphatic substituted benzenes, and petroleum hydrocarbons, are present in soil and groundwater. Low levels of chlorinated VOCs (e.g.., trichloroethene) have also been detected. The majority of VOC contamination in soil is present in soil samples collected between 0 and 2 ft bgs, suggestive of an historical surficial release at Site 04. The soil VOC contamination is bounded by the perimeter soil samples SS-11, SS-17, SS-18, SS-19, which show non-detect results for VOCs, and SS-20 which shows very low levels of VOCs. Groundwater VOC contamination at Site 04 has been detected in shallow groundwater and deep groundwater. The shallow groundwater plume does not extend off of the facility property, and is bounded by clean (non-VOC impacted) downgradient sampling locations. The deep groundwater contamination appears to be a continuation of a groundwater plume from Site 05. The deeper groundwater plume at Site 04 is either overlain by the shallow groundwater plume, or by clean (non-VOC impacted) groundwater at locations outside of the extent of the shallow groundwater plume.

Collectively, the RI data indicate that petroleum-related and chlorinated constituents are present in soil and groundwater. Given the shallow nature of the groundwater, it is likely that the release to soil migrated directly into the saturated zone, where contamination spread downgradient with groundwater flow.

Under existing land use conditions, contact with surface soil would be negligible given that there are no activities that are designated to occur in grass-covered areas other than occasional lawn mowing. This

RA incorporates the assumption that industrial/commercial or military use of the Site will be maintained in the future. Under current and future land use conditions, industrial/commercial workers could contact soil while working outdoors.

Volatile chemicals in shallow groundwater can partition to soil gas, and soil gas can subsequently migrate to air within nearby or overlying enclosed buildings. This migration pathway is referred to as vapor intrusion. If the buildings are occupied, people breathing the air may be exposed to the vapors. Under current land use conditions, exposure pathways to vapors that may migrate to air within the Maintenance Building are not complete because: a) the building is not an occupied building such as an office building; it is a garage that is used only USARC duties to maintain military vehicles; and b) volatile contamination in groundwater associated with Site 05 is in closer proximity to the building and, therefore, would be more representative of the potential groundwater VOC sources to indoor air. However, if the Maintenance Building was expanded such that a portion was located over or in close proximity to Site 04, or if a new building was constructed at Site 04, the vapor intrusion pathway could be complete.

Data Evaluation

The data evaluation portion of the Hazard Identification section: a) identifies the data available for use in HHRA, and justifies the selection or exclusion of particular data for use in the risk assessment; b) provides the rationale for the way data will be grouped for evaluation in the risk assessment; and c) documents the methods used to summarize data into statistical descriptors.

Data Sources and Data Quality

The RI and Risk Assessment for Site 04 are based on the data collected in support of the RI/FS program. Data collected for the RI are selected for use in the HHRA using the criteria established by EPA in "Guidance for Data Usability in Risk Assessment" (USEPA, 1992).

The data presented in this RI and selected for use in the HHRA are a product of laboratory analyses performed in accordance with EPA methods and associated Quality Assurance/Quality Control (QA/QC) procedures, as described in the QAPP. Data are presented in **Appendix J**. Based on the data quality assessment (see Section 2.1.6), data are of suitable quality for use in the risk assessment.

Data Used in HHRA

Soil samples collected at Site-04 include:

• Twenty-one soil samples collected from surface soil sampling locations (SS-01 through SS-20) at the 0-1 or 1-2 ft bgs interval (location SS-06 was also sampled at the 2-3 ft bgs interval) in 2006 and 2007 in support of the MACTEC RI. As indicted in **Table 3-1**, all of these samples were analyzed for VOCs. A subset of the samples were analyzed for lead, GRO, DRO, VPH, and EPH. The GRO/DRO and EPH/VPH analyses were divided among the samples so that each sample received either GRO/DRO or EPH/VPH analyses.

The soil data are presented in **Appendix J**, the analytes detected in soil are presented in **Table 2-5**, and the soil sample locations are shown in **Figure 2-1**.

All of the soil data are used in the HHRA, as indicated in **Table 3-1**.

Groundwater samples collected at Site-04 include:

- Nineteen groundwater samples collected by direct push methods from surface soil sample locations. Ten of the samples were collected in 2006 and nine of the samples were collected in 2007:
- Twenty-one groundwater samples collected from monitoring wells in 2006 and/or 2007;
- All samples were analyzed for VOCs and a subset of samples were analyzed for total and filtered metals, as indicated in **Table 3-1**.

The groundwater data from the investigation are presented in **Appendix J**, the analytes detected in groundwater are presented in **Table 2-6**, and the groundwater sample locations are shown in **Figures 2-2** and 2-3.

The only potential exposure pathway to chemicals in groundwater is via vapor migration to indoor air (vapor intrusion). A discussed in Section 2.2.3, the groundwater data indicate that the groundwater VOC contamination associated with the release(s) at Site 04 is confined to the upper 12 feet of the aquifer. VOC contamination in the shallow groundwater represents a potential source of vapor intrusion. VOC contamination that is located deeper in the aquifer (beneath the shallow VOC groundwater contamination), or that is overlain by clean groundwater (non-VOC impacted groundwater), is not a potential source of vapors that may migrate to indoor air. Therefore, the groundwater data used in the HHRA are for samples that were collected from direct push intervals with a bottom depth 12 ft bgs or shallower, and from monitoring wells with a bottom depth of the screened interval that is 12 ft bgs or shallower. The samples used for the HHRA are listed in **Table 3-1**.

Data Summarization

The ultimate product of data evaluation and data summarization is a set of analytical data in a form that can be used in the quantitative risk assessment. Each data set developed for the risk assessment is summarized so as to provide the following statistical descriptors:

- The ratio of the number of samples in which the constituent is detected to the total number of samples (i.e., frequency of detection);
- Range of analytical quantitation limits;
- Range of detected concentrations;
- Data qualifiers associated with the minimum and maximum detected concentrations;
- Sample identifier associated with the maximum detected concentration; and
- Arithmetic mean concentration.

A data summary for soil is provided in **Table 3-2** and a summary for groundwater is presented in **Table 3-3**. The following procedures were applied when summarizing the analytical data for the HHRA:

- For samples in which a field duplicate was collected, both of the analytical results were used in the risk assessment.
- Rejected data ("R" qualified results) were not used in the risk assessment.
- Results qualified as estimated ("J" qualified) were used in the risk assessment.
- For samples in which analyte concentrations are detected outside the calibration range, and the samples are diluted and reanalyzed, only the re-analysis results were used in the risk assessment.

• Arithmetic mean concentrations were calculated as the mean of detected concentrations, consistent with current USEPA guidance (USEPA, 2007).

Chemicals of Potential Concern

COPCs are chemicals that may pose more than a *de minimis* health risk. A concentration-toxicity screening is used to reduce the number of chemicals evaluated in the risk assessment to only those that would potentially pose more than a *de minimis* health risk (USEPA, 1994). The procedure used to select COPCs for the HHRA is summarized as follows, and is consistent with USEPA methodology:

A. Comparison to Available Criteria

- Selected as a COPC in soil if the maximum detected concentration exceeds the USEPA Region IX PRG for residential soils (USEPA, 2004b).
- Selected as a COPC in groundwater if the maximum detected concentration exceeds the USEPA shallow groundwater target concentration for vapor intrusion (USEPA, 2002c).

The PRGs are protective for direct contact (ingestion and dermal contact) exposures, as well as for inhalation of constituents that may be released to air. The PRGs are derived for a 1 in 1 million (1x10⁻⁶) cancer risk level or a non-cancer hazard quotient (HQ) of 1. Per USEPA Region 1 guidance (USEPA, 1999), the PRGs based on non-carcinogenic effects are adjusted to represent a HQ of 0.1 for the purposes of COPC selection. The use of residential soil PRGs to select COPCs in soil represents a conservative approach since the Site is presently, and will continue to be, used only for non-residential purposes.

The USEPA vapor intrusion guidance (USEPA, 2002c) provides a tiered approach for evaluating the vapor intrusion exposure pathway. The first tier of analysis involves identifying VOCs that are of sufficient toxicity and volatility to represent a potential vapor intrusion concern, and determining if the VOC source area could pose a potential vapor intrusion source. The conceptual model for the Site considers the possibility that buildings could be constructed at Site 04 in the future, thereby resulting in the shallow groundwater VOC plume being a potential VOC source for vapor intrusion. The vapor intrusion screening values published by USEPA (2002c) may be used with analytical data to determine if VOCs are present at concentrations that could pose a potential vapor intrusion concern. Use of the vapor intrusion screening values for the groundwater COPC selection completes the first tier of vapor intrusion The USEPA vapor intrusion screening values (USEPA, 2002c) represent groundwater concentrations that are protective for migration of vapors from groundwater to air within a residential house with a basement. The screening values presented in Table 3-3 are derived for a 1 in 1 million (1x10⁻⁶) cancer risk level or a non-cancer HQ of 0.1. These screening values may be used to identify VOCs that could present a potential vapor intrusion concern and, therefore, require additional evaluation. Application of these values to select COPCs in groundwater is conservative because the Site is presently, and will continue to be, used only for non-residential purposes.

B. Low Frequency of Detection:

• Despite other criteria, an analyte is not selected as a COPC if the frequency of detection is 5 percent or less and the chemical is not known to be associated with historical operations at the Site (USEPA, 1989).

The results of the COPC selection for soil and groundwater are provided in Tables 3-1 and 3-2. The following notes are used to denote the reasons for selection or exclusion of analytes as COPCs:

ASL: The concentration used for COPC screening (the maximum detected concentration) is greater than the risk-based PRG; the analyte is therefore selected as a COPC.

- BSL: The concentration used for COPC screening (the maximum detected concentration) is less than the risk-based PRG; the analyte is therefore not selected as a COPC.
- NSL: There is no screening value available; the analyte is therefore selected as a COPC.
- FOD: The frequency of detection is below 5%; the analyte is therefore not selected as a COPC.
- NV: The analyte is not considered to be sufficiently volatile to pose a potential vapor intrusion concern (USPEA, 2002c).

In soil (**Table 3-2**), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-iso-propyltoluene, naphthalene, 2-methylnaphthalene, xylenes, and petroleum hydrocarbons (DRO, GRO, VPH fractions, and EPH fractions) were retained as COPCs. The petroleum fractions and 4-iso-propyltoluene were retained as COPCs because no screening values are available. All other chemicals were retained as COPCs because they were detected at maximum concentrations in excess of the PRG values.

In groundwater (**Table 3-3**), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-iso-propyltoluene, benzene, isopropylbenzene, naphthalene, butylbenzene, and propylbenzene were retained as COPCs. 4-Iso-propyltoluene was retained as a COPC because no screening value is available. All other chemicals were retained as COPCs because they were detected at maximum concentrations in excess of the vapor intrusion screening values.

3.1.2 Exposure Assessment

The exposure assessment is conducted to evaluate the populations of humans that may potentially occur at the site, the mechanisms or exposure pathways by which those humans may be potentially exposed to contamination at the site, and the magnitude of exposure that may occur through the potential exposure pathways. This process involves three steps:

- 1) Characterization of the exposure setting in terms of physical characteristics, current and future uses of the site, and the populations that may be potentially exposed to COPCs under the current and future land uses;
- 2) Identification of potential exposure pathways and exposure points to which the populations may be exposed; and
- 3) Quantification of exposure to COPCs for each potentially complete pathway and exposure point.

Characterization of Exposure Setting and Potentially Exposed Populations

The AMSA 68 (G) site consists of the Maintenance Building, and surrounding paved and mowed grass areas. Site 04 is located to the north of the Maintenance Building along the property boundary. Under the current land use conditions, the facility is used by the USARC for military vehicle maintenance. Since Site 04 is located within a fenced military installation, it is unlikely that trespassers would gain access to, or spend time at, the Site. Therefore, under current land use conditions, only military personnel are expected to be present at the Site.

The future use of the facility is not expected to change. Therefore, it is unlikely that persons other than facility personnel would access the Site. However, the risk assessment incorporates the assumption that

the Site could become actively used for industrial/commercial purposes, and that access by facility personnel or industrial/commercial workers could occur frequently and for prolonged periods.

The risk assessment incorporates the assumption that the Site will not be used for purposes other than industrial/commercial in the future. Therefore, under future use conditions, military personnel and/or industrial/commercial workers could be present at the Site.

Groundwater beneath the Site is classified as GB by the State of Rhode Island. Groundwater flows north from Site 04 toward the property boundary. GB groundwater is not considered to be a source of potable water; potable water is supplied to the facility by the Town of Smithfield. GB groundwater is considered by the State of Rhode Island to be a potential source of vapors to indoor air. The adjacent downgradient property (north of Albion Road) overlies GA groundwater. GA groundwater is considered to be a potential potable water resource.

Exposure Pathways and Exposure Points

Based on the current and future land use information, the following exposure pathways to soil may be potentially complete and, therefore, are evaluated in the risk assessment. **Table 3-4** provides a summary of the potentially complete exposure pathways.

The majority of the soil samples collected at the Site are from locations in an unpaved grass and weed covered area. Facility personnel may be exposed to soil during lawn mowing or other similar activities.

Exposure to the constituents in soil can occur through dermal contact with the soil (e.g., placing hands on the soil or when soil-derived dust becomes adhered to skin following active work on the soil), incidental ingestion of soil (e.g., through hand-mouth activity), and through inhalation of soil-derived dust (e.g., wind erosion or excavation of unvegetated soil) or vapors emitted from volatile constituents in the soil.

The only potentially complete exposure pathway to groundwater is via migration of vapors to indoor air, if a building is constructed at or in close proximity to Site 04 in the future. Industrial/commercial workers in such a building could be exposed to VOCs by inhalation of indoor air while occupying the building.

Under current land use conditions, the exposure pathways that may be complete include:

• Soil: Incidental ingestion, dermal contact, and dust and ambient vapor inhalation to constituents in unpaved soil by facility personnel.

Under future land use conditions, the exposure pathways that may be complete include:

- Soil: Incidental ingestion, dermal contact, and dust and ambient vapor inhalation to constituents in soil by industrial/commercial workers working at the facility.
- Groundwater: Inhalation of vapors that may migrate from groundwater to indoor air.

The soil exposure point evaluated in this HHRA is surface soil (soil 0-2 ft bgs, plus the 2-3 ft bgs samples collected at SS-06). All soil samples collected at Site 04 (**Table 3-1**) are included in the exposure point except locations SS-11, SS-16, SS-17, and SS-18, which are clean perimeter samples (i.e., no VOCs or petroleum detected) and are therefore excluded from the soil exposure point.

The groundwater exposure point evaluated in this HHRA is shallow groundwater associated with Site 04 (samples listed in **Table 3-1**). The downgradient groundwater samples that exhibit no detected VOCs are not included in the groundwater exposure point (**Table 3-1**).

Exposure Scenarios

Exposure scenarios are used to quantitatively describe the COPC exposures that could theoretically occur for each land use and exposure pathway evaluated. The exposure scenarios are used in conjunction with exposure point concentrations (EPCs) to derive quantitative estimates of COPC intake. The ultimate goal of developing exposure scenarios, as defined in USEPA guidance, is to identify the combination of exposure parameters that results in the most intense level of exposure that may "reasonably" be expected to occur under the current and future site conditions (USEPA, 1989). Therefore, one exposure scenario is often selected to provide a conservative evaluation for the range of possible receptors and populations that could be exposed at the site. The resulting exposure scenarios are referred to as the Reasonable Maximum Exposure (RME) for each exposure pathway.

To characterize potential exposures and risks associated with soil and vapor intrusion from groundwater at this Site, a full-time industrial/commercial worker scenario is used. Although current and anticipated use of the property is by military personnel as opposed to industrial/commercial workers, the industrial/commercial worker scenario simulates potential contact with soil or building occupancy that would occur to someone who accessed or worked at the Site full-time over a long duration, and is therefore protective for military personnel who may have more limited contact with the soil or who may be in buildings only part-time.

The risk assessment considers the potential for frequent exposures to soil and indoor air by adult workers under future land use conditions. The industrial/commercial worker scenario is evaluated in this risk assessment to represent potential exposures under current and future land use conditions.

The industrial/commercial worker scenario for soil is evaluated using USEPA default exposure parameters for outdoor industrial/commercial workers (USEPA, 2002a). The industrial/commercial worker scenario for groundwater is evaluated using USEPA default exposure parameters for indoor workers (USEPA, 2002a). The exposure parameters and intake algorithms are provided in **Table 3-5** (soil) and **Table 3-6** (groundwater), and are based on an exposure to Site media 8 hours per day, 225 days per year, for 25 years.

Exposure Point Concentrations

In accordance with USEPA guidance, RME EPCs are typically based on the lesser of the 95 percent upper confidence limit (UCL) on the arithmetic mean of the concentration, or the maximum detected concentration in the data set, for each exposure point (USEPA, 1995). The 95 percent UCL values are calculated using the ProUCL software (V. 4.0; USEPA, 2007). The ProUCL software tests the distribution of the data set for which the EPC is being derived (e.g., normal, lognormal, gamma, non-parametric), and then calculates a conservative and stable UCL value in accordance with the framework described in "Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites" (USEPA, 2002b). UCL calculations for soil are documented in **Appendix K**. EPCs for soil are presented in **Table 3-7**.

The EPCs for ambient vapors that may result from migration of VOCs from soil, and for dust that may be liberated from the soil, are calculated using the soil EPCs (**Table 3-7**) with fate and transport models. The vapor and dust emission from soil to ambient (outdoor) air was estimated using the Jury Model (as presented in USEPA, 1996). Modeling calculations are presented in **Appendix K**. The dust emissions are

characterized using a particulate emission factor, and the vapor emissions are characterized using a volatilization factor.

The soil-to-air volatilization defines the relationship between concentrations of COCs in soil and concentrations of COCs in air. The model is based on the premise that volatile COCs vaporize from soil to soil gas, then migrate through soil pore space and diffuse into the open atmosphere where receptors breathing the air might be located. Inputs to the model include factors that control the flux of the chemical (e.g., soil characteristics such as density and porosity, and chemical-specific characteristics such as Henry's Law constant), and a dispersion factor that accounts for the soil source size and meteorological conditions at the site. Soil parameters used in the model were USEPA (2004b) default parameters for type 'SL' soils, as used for the vapor intrusion modeling (described below).

Indoor air EPCs were estimated from the groundwater EPCs using the Johnson-Ettinger model, as adapted by USEPA. This model is widely accepted as a screening-level model for estimating vapor intrusion into buildings, and has been adopted by USEPA for establishing vapor intrusion screening levels in groundwater and soil gas (USEPA, 2002c). The model is based on the premise that volatile COPCs partition from groundwater to soil gas, then migrate through soil pore space and are drawn through cracks in a foundation or building slab into the air within an overlying building, where receptors breathing the air might be located. The model used in this HHRA is the Groundwater Advanced Model (v. 3.1) published by USEPA (USEPA, 2004b). The groundwater model uses measured groundwater COPC concentrations with soil characteristics (e.g., porosity), chemical-specific parameters (e.g., Henry's Law constant), and building-specific parameters (e.g., building ventilation rate), to provide an estimate of indoor air concentrations.

Modeling was performed assuming that a slab-on-grade commercial or industrial building is constructed at the Site. The groundwater source concentrations used in the modeling were the groundwater maximum detected concentration of the volatile COPCs. This represents a conservative approach, since the groundwater VOC source to indoor air would be the VOC groundwater contamination beneath and in close proximity to the entire building footprint; this is most appropriately represented by average concentrations. Use of the maximum detected concentration as the groundwater VOC source concentration results in a modeling assumption that the VOC concentrations in groundwater beneath the entire building footprint are represented by the maximum detected concentrations, and is therefore protective for placement of a building anywhere at Site 04. The following Site-specific input parameters to the model were used; all other input parameters are the USEPA default values:

- Depth of groundwater: 3 ft bgs (90 cm)
- Soil type: Loamy Sand (type "LS")
- Indoor ceiling height: 8 feet (244 cm) (assumes office space ceiling height)
- Duration of exposure: 25 years (based on RME duration for industrial/commercial workers)

Groundwater and indoor air EPCs are presented in **Table 3-8**.

Calculation of Intakes

COPC intakes via the ingestion, dermal contact, and inhalation exposure routes are calculated using the exposure parameters and EPCs identified previously. The quantified intakes for these exposure routes are combined with the appropriate dose-response data to quantify risks, as discussed in Section 3.1.4.

The equations used to calculate intake are those presented in USEPA guidance (USEPA, 1989; 2004a), and are shown in **Table 3-5**.

Ingestion

The general equation for calculating chemical intake via ingestion is as follows:

$$Intake = \frac{CS \times IR \times FI \times EF \times ED \times CF}{BW \times AT}$$

where:

Intake	=	average daily dose of COPC received over the averaging period (mg chemical/kg
		body weight-day),
CS	=	concentration of the COPC at the exposure point to which the receptor of interest
		is exposed (i.e., the EPC) (milligrams per kilogram [mg/kg]; mg/L),
IR	=	ingestion rate for the medium of concern (mg/day; L/day),
FI	=	fraction ingested (unitless),
EF	=	exposure frequency representing the number of exposure events during each year
		of exposure (days/year),
ED		

ED exposure duration representing the period of time over which exposure may occur (years),

CF appropriate units conversion factor (e.g., kg/mg)

BWbody weight of the hypothetically exposed individual (kg)

averaging time (for carcinogens, AT = 70 years times 365 days per year; for ΑT noncarcinogens, AT = ED times 365 days per year).

Dermal Contact

The equation for calculating chemical intake via dermal contact with soil is as follows:

$$Intake = \frac{DAevent*SA*EV*EF*ED}{BW*AT}$$

occur (years),

and:

$$DAevent = CS * AF * ABSd * CF$$

where:

ng chemical/kg
ing chemical kg
oosure event
eptor of interest
exposure event
1
bsorbed
.0001000
luring each year
at the exposure
exposure may
il a

CF = appropriate units conversion factor (e.g., kg/mg)
BW = body weight of the hypothetically exposed individual (kg)
AT = averaging time (for carcinogens, AT = 70 years times 365 days per year; for noncarcinogens, AT = ED times 365 days per year).

The dermal absorption factor (unitless) describes the amount of COPC that may be absorbed through the skin and into the blood stream (i.e., amount that may become bioavailable) following dermal exposure to soil. Among the soil COPCs at this site, dermal absorption factors are published by USEPA (USEPA, 2004a) for naphthalene and 2-methylnaphthalene (based on the value of 0.13 for PAHs).

Inhalation

The methodology for evaluating inhalation exposures differs from that used for other exposure pathways in that the toxicity values used are RfCs and unit risks (URs) instead of reference doses (RfDs) and slope factors (SFs). Because concentration and not dose is the basis for these toxicity values, body weight, and respiration rate are not directly used in calculating potential risk estimates for carcinogenic and noncarcinogenic chemicals. The general equation for calculating chemical exposure via inhalation is as follows:

Exposure Concentration =
$$\underbrace{CA \times ET \times EF \times ED}_{CF \times AT}$$

Where:

Exposure Concentration = representative concentration of COPC in the air at the exposure point during the period of exposure (mg/m^3)

CA = concentration of the COPC in air (mg/m³),

EF = exposure frequency (days/year),

ED = exposure duration (years),

ET = exposure time (hours/day)

CF = conversion factor (24 hours/day)

AT = averaging time (for carcinogens, AT = 70 years times 365 days per year; for non-

carcinogens, AT = ED times 365 days per year).

The quantified COPC intakes for each receptor, exposure point, and exposure route quantitatively evaluated in this HHRA are presented in the risk calculations discussed in Section 3.1.4.

3.1.3 Toxicity Assessment

The objective of the toxicity assessment is to quantify the relationship between the intake, or dose, of COPCs and the likelihood that an adverse health effect may result from exposure to the COPCs. There are two major types of adverse health effects evaluated in the risk assessment: carcinogenic, and non-carcinogenic. Following USEPA guidance (USEPA, 1989), these two effects (carcinogenic and non-carcinogenic) are evaluated separately.

There are two types of dose-response values: cancer slope factor (CSF) values for carcinogens; and RfD values for non-carcinogens. For potentially carcinogenic COPCs, both types of values have been developed by USEPA because these COPCs may elicit both carcinogenic and non-carcinogenic (systemic) effects. In addition, because toxicity and/or carcinogenicity can depend on the route of exposure (i.e., oral or dermal), unique dose-response values have been developed for the oral and dermal exposure routes.

Dose-Response Values for Carcinogenic Effects

For carcinogenic effects, USEPA uses a two-part evaluation in which the substance is first assigned a weight-of-evidence classification, and then a CSF or UR is calculated to reflect the carcinogenic potency.

<u>Group A - Human Carcinogen.</u> This category indicates there is sufficient evidence from epidemiological studies to support a causal association between an agent and human cancer.

<u>Group B - Probable Human Carcinogen.</u> This category generally indicates there is at least limited evidence from epidemiologic studies of carcinogenicity to humans (Group B1) or that, in the absence of data on humans, there is sufficient evidence of carcinogenicity in animals (Group B2).

<u>Group C - Possible Human Carcinogen.</u> This category indicates that there is limited evidence of carcinogenicity in animals in the absence of data on humans.

<u>Group D - Not Classified.</u> This category indicates that the evidence for carcinogenicity in animals is inadequate.

<u>Group E - No Evidence of Carcinogenicity to Humans.</u> This category indicates that there is evidence of noncarcinogenicity in at least two adequate animal tests in different species or in both epidemiologic and animal studies.

In the revised Guidelines for Carcinogenic Risk Assessment (USEPA, 2003), USEPA revised the approach to describing the carcinogenic potential of an agent from an alphanumeric system to a weight-of-evidence-based descriptive narrative. "Carcinogenic to Humans", "Likely to Be Carcinogenic to Humans", "Suggestive Evidence of Carcinogenic Potential", "Data Inadequate for an Assessment of Human Carcinogenic Potential", and "Not Likely to be Carcinogenic in Humans" are example descriptors that would be accompanied by a narrative that summarizes the basis of the descriptor. Therefore, USEPA's previous alpha-numeric classifications described below are found in USEPA's Integrated Risk Information System (IRIS) database for most chemicals. In the USEPA IRIS, the weight of evidence classification for a given chemical may reflect either of the two classification schemes identified above.

CSF and UR values are typically calculated for chemicals in Groups A, B1, B2, and "Carcinogenic to humans" and "Likely to be carcinogenic to humans". Cancer dose-response values for chemicals in Group C are calculated on a case-by-case basis. The CSF is an estimate of the upper 95 percent confidence limit of the slope of the dose-response curve extrapolated to low doses.

Dose-Response Values for Non-carcinogenic Effects

In contrast to carcinogens, non-carcinogens are believed to have threshold exposure levels below which adverse effects are not expected. USEPA has derived standards and guidelines based on acceptable levels of exposure for such compounds. Non-carcinogenic effects of concern on which many of the standards and guidelines are based include liver toxicity, reproductive effects, neurotoxicity, teratogenicity, and other chronic toxicities. Various criteria have been developed from experiments that can be used to estimate the dose-response relationship of non-carcinogens. Some of the same uncertainties involved in deriving cancer risk estimates (namely, selection of an appropriate data set and extrapolation of high-dose animal data to low-dose human exposure) are also involved in deriving non-carcinogenic dose-response criteria. Dose-response values used most often to evaluate non-carcinogenic effects are RfDs.

The RfD, expressed in units of mg/kg/day, is defined as an estimate (with uncertainty spanning perhaps an order of magnitude or greater) of a daily exposure level for the human population, including sensitive

subpopulations, that is likely to be without an appreciable risk of deleterious effects during a lifetime (USEPA, 1989a). When available, the RfD is the dose-response criterion most appropriate for quantitatively estimating non-carcinogenic effects. The RfC, in units of mg/m^3 , is analogous to the RfD and is developed through a similar process. However, unlike RfDs, which represent a dose (in mg/kg/day) at which adverse or deleterious effects are unlikely, RfCs represent air concentrations (in mg/m^3) at which adverse or deleterious effects are unlikely (i.e., an air concentration corresponding to a HI = 1.0). In this HHRA, inhalation RfCs are used to estimate the non-cancer risks associated with inhaling COPCs.

Adjustment for Dermal Exposure

Cancer CSFs and non-cancer RfDs were developed to evaluate risk associated with the dermal contact exposure route. In accordance with USEPA guidance (USEPA, 2004b), dermal dose-response values are calculated from oral dose-response values using an oral absorption factor. The oral absorption factor represents the amount of substance that is absorbed from the gastrointestinal tract following oral administration of a substance. The absorbed dose represents the amount of substance that is potentially available for biological interaction; it is by this dose-response relationship that the toxicity of a dermally absorbed substance must be evaluated.

Thus, for potentially carcinogenic substances, the dermal dose-response value is calculated as follows:

$$SF_d = SF_o / Oral ABS$$

The dermal dose-response value for evaluating noncarcinogenic effects is calculated as follows:

$$RfD_d = RfD_o X Oral ABS$$

Chemical-specific oral ABS values for are published by USEPA (USEPA, 2004a). In accordance with USEPA guidance (USEPA, 2004a), oral dose-response values are only adjusted using an oral ABS value if the COPC has an oral ABS value less than 50 percent. Otherwise, the oral dose-response value is used as the dermal dose-response value.

Sources of Dose-Response Values

The following hierarchy of sources, established by EPA (USEPA, 2003), has been used to identify CSF and RfD values for this risk assessment.

Tier 1- IRIS (http://www.epa.gov/iris/). In accordance with USEPA guidance, the main source of doseresponse values is the USEPA IRIS, which is a database established by USEPA containing all validated data on many toxic substances found at hazardous waste Sites. This database, current as of July, 2007, was used to identify the majority of CSF and RfD values applied in this risk assessment.

Tier 2- NCEA's provisional peer reviewed toxicity values (PPRTVs) (http://hhpprtv.ornl.gov/). National Center for Environmental Assessment (NCEA) PPRTVs are developed by the Superfund Technical Support Center (STSC) for the EPA Superfund program. STSC's reassessment of Health Effects Assessment Summary Table (HEAST) toxicity values, as well as development of PPRTVs in response to Regional or Headquarters Superfund program requests, are consistent with Agency practices on toxicity value development, use the most recent scientific literature, and are supported by both internal and external peer review, providing a high level of confidence in the use of these values in the Superfund Program. The PPRTVs used in this risk assessment are current as of April, 2007.

Tier 3 - Other toxicity values

- Cal EPA's toxicity values. Cal EPA develops toxicity values for both cancer and non-cancer effects. Cal EPA toxicity values are obtained on the Cal EPA website at http://www.oehha.ca.gov/risk/chemicalDB//index.asp. The Cal EPA toxicity values used in this risk assessment are current as of April, 2007.
- Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs) address non-cancer effects only, and are available on the ATSDR website at http://www.atsdr.cdc.gov/mrls.html. MRL values for chronic exposure were used as chronic RfD values. The MRL values used in this risk assessment are current as of December, 2006.
- Toxicity values remaining in current versions of HEAST (USEPA, 1997).

Dose-response values are presented in **Tables 3-9 through 3-12**.

3.1.4 Risk Characterization

The risk characterization integrates the exposure and toxicity information generated in previous sections to qualitatively or quantitatively evaluate the potential health risks associated with exposure to COPCs at the Site. Risk estimates are then evaluated through a comparison to risk management criteria.

Risk Characterization Methods

Quantitative estimates of both carcinogenic and non-carcinogenic risks are calculated for each complete exposure scenario selected for evaluation in the exposure assessment, in accordance with USEPA (1989) guidance. Methods of quantifying cancer and non-cancer risks, and summing total pathway risks, are discussed below.

<u>Carcinogenic Risks</u>. Cancer risks associated with exposure to each COPC are estimated by multiplying the exposure route-pathway specific intake (e.g., oral exposure to groundwater) by its exposure route-specific CSF (e.g., oral CSF). The calculated value is an excess lifetime cancer risk (ELCR) and represents an upper bound of the probability of an individual developing cancer over a lifetime as the result of exposure to a COPC.

<u>Non-carcinogenic Risks.</u> Non-cancer risk estimates are calculated by dividing the COPC intake for each exposure pathway by the appropriate RfD or RfC. The result is called the HQ. The hazard index (HI) is the sum of the chemical-specific HQs for each exposure pathway.

A HI less than 1 indicates that non-carcinogenic toxic effects are unlikely to occur as a result of COPC exposure. HIs greater than 1 may be indicative of a possible non-carcinogenic toxic effect. As the HI increases, so does the likelihood that adverse effects might be associated with exposure. This determination is necessarily imprecise because the RfD is developed using uncertainty factors (uncertainty factors of 10 or greater are not uncommon) to be protective of human health. It is not at all certain, therefore, that an intake that exceeds the RfD would mean that adverse effects would be experienced.

<u>Summary.</u> Risks are summed across all COPCs for each exposure route and each exposure point. Risks across multiple exposure points and multiple exposure media are then summed to yield cumulative cancer and non-cancer risk estimates for the receptor.

Within the risk characterization for each receptor scenario, the relative significance of the risk for each pathway, exposure point, and receptor scenario is evaluated in terms of a comparison with acceptable risk levels established by USEPA. The USEPA guidelines, established in the NCP, indicate that the total excess lifetime cancer risk due to exposure to the chemicals at a site, by each complete exposure pathway, should not exceed a range of 1 in 1,000,000 (1x10⁻⁶) to 1 in 10,000 (1x10⁻⁴) (USEPA, 1990). Risks between 1x10⁻⁶ and 1x10⁻⁴ should be considered on a case-by-case basis during the risk management process. According to the NCP, for non-cancer effects, the acceptable risk is associated with chemical concentrations that people (including sensitive individuals such as children) can be exposed to with an adequate margin of safety without adverse effects occurring. This level is generally interpreted by USEPA to be a HI of 1 or less.

Risk Characterization Results

Risk calculations are presented in **Table 3-13**.

Soil – Industrial/Commercial Worker

The risk characterization results for industrial/commercial worker exposure to soil are as follows:

Exposure Route	Cancer Risk (ELCR)	Non-Cancer Risk (HI)
Ingestion		0.007
Dermal		0.001
Ambient vapor inhalation		1
Dust inhalation		0.00001
Cumulative	No potentially carcinogenic	1
	COPCs	

As shown, the hazard index is equal to 1. This value does not exceed the threshold HI value of 1. The HI of 1 is primarily associated with inhalation of vapors that may be released from the surface soil to the ambient air. Trimethylbenzenes in soil account for more than 99% of the ambient vapor inhalation risk. Evaluation of the ambient vapor inhalation exposure pathway is based on a conservative model of VOC migration in soil to ambient air.

Groundwater – Industrial/Commercial Worker

The risk characterization results for industrial/commercial worker exposure to groundwater are as follows:

Exposure Route	Cancer Risk (ELCR)	Non-Cancer Risk (HI)
Indoor vapor inhalation	$2x10^{-9}$	0.0001
Cumulative	$2x10^{-9}$	0.0001

As shown, the hazard index is below 1 and the cancer risk is below the NCP risk range of $1x10^{-6}$ to $1x10^{-1}$

Cumulative Soil and Groundwater - Industrial/commercial Worker

The risks associated with potential exposures to soil are based on exposure assumptions that are protective for full time outdoor workers. Conversely, the risks associated with potential exposures to vapors that may migrate from groundwater are based on exposure assumptions that are protective for full

time indoor workers. The same worker population cannot be indoors and outdoors at the Site full-time (i.e., 8 hours per day). Therefore, summation of soil and groundwater risks represents an overestimation of potential risks. This is in particular the case at Site 04 because risks for soil are primarily associated with the vapor inhalation pathway; the magnitude of risks for that pathway is directly proportional to the amount of time spent outdoors. Nonetheless, summation of risks for soil and groundwater provides an estimate of risks that is conservative for the future land use conditions. The total HI for combined exposure to soil and groundwater is 1, and the total cancer risk for combined exposure to soil and groundwater is 2×10^{-9} .

The soil, groundwater, and combined soil and groundwater cancer risks are below the NCP risk range of $1x10^{-6}$ to $1x10^{-4}$ and the HI values do not exceed 1. This indicates that use of the Site 04 for full time industrial/commercial or military use, including full time worker contact with soil and full-time occupancy of a building subject to vapor intrusion of VOCs from shallow groundwater, is associated with health risks that do not exceed USEPA risk management criteria.

3.1.5 Uncertainty Analysis

This section identifies and discusses uncertainties in the risk assessment. These uncertainties are identified in order to place the results in a context or perspective. Unlike some other assessments, risk assessments rely not just on measured or certain facts, but also on assumptions and estimates, and also policy decisions, in the face of limited or non-existent data. Historically, risk assessments have used highly conservative assumptions in the place of unavailable data, with the net result often being a substantial overestimation of potential risks. This approach was considered the "protective" approach, in that it would overestimate rather than underestimate potential risks. This uncertainty discussion is not intended to identify "problems" with the risk assessment, only to point out how decisions made in the face of uncertainty may have affected the results and conclusions of the assessment. It should be emphasized that the potential risks estimated here are based on numerous assumptions. Each of these assumptions is associated with some uncertainty. Several types of uncertainties should be considered in any human health risk evaluation:

- uncertainties in the nature and extent of release of OHM;
- uncertainties associated with estimating the frequency, duration, and magnitude of possible exposure;
- uncertainties associated with assigning exposure parameters to a heterogeneous population that includes both men and women and young and old (e.g., body weight and ventilation rates);
- uncertainties in estimating carcinogenic slope factors and/or noncarcinogenic measures of toxicity (e.g., RfDs or RfCs); and
- uncertainties about possible synergistic or antagonistic chemical interactions of a chemical mixture.

The uncertainties associated with estimating possible exposure result from the variance in sampling and analytical techniques, and from quantifying parameters that are not directly observed (e.g., frequency and duration of exposure). Because some of these parameters are functions of the behavior patterns and personal habits of the exposed populations, no single value can be assumed to be representative of all possible exposure conditions. The standard of care for environmental risk assessments for addressing many of these uncertainties is to use upper-bound (90th or 95th percentile) estimates of input values, such as exposure parameters and toxicity values.

There are uncertainties in the four areas of risk assessment: hazard identification, toxicity assessment, exposure assessment, and risk characterization. Substantial uncertainties are discussed below.

<u>Exposure Assessment</u>. The Site represents a small area. Therefore, it is unlikely that humans would contact COPCs at the frequency and intensity estimated in this risk assessment. Consequently, the risk characterization represents a conservative assessment of potential exposures and risks.

The HI values are primarily associated with inhalation of trimethylbenzene vapors that may migrate from soil to outdoor air. The ambient air concentrations were estimated using fate and transport modeling that is highly sensitive to variables such as soil moisture content and organic carbon content. Default soil moisture and organic carbon content values were used; these values are based on relatively dry, organic-free soil conditions. Therefore, the outdoor air vapor concentrations and associated risks are unlikely to be underestimated.

<u>Toxicity Assessment.</u> The VOC 4-iso-propyltoluene was selected as a COPC in soil and groundwater. This VOC was retained as a COPC because no screening values are available for it, and in accordance with the COPC selection methodology, constituents that do not have screening values are retained as COPCs. However, no dose-response values are available for this compound in any of the EPA-approved sources for dose-response values (USEPA, 2003). Therefore, health risks associated with potential exposures to this VOC could not be quantitatively characterized.

The concentration of 4-iso-propyltoluene in soil and groundwater is similar to the concentrations of other structurally similar VOCs in those media (e.g., propylbenzene, isopropylbenzene, butylbenzenes). If one were to assume that 4-iso-propyltoluene had a toxicity similar to that of those other structurally similar compounds, the HI values associated with 4-iso-propyltoluene would be negligible (below 0.01).

<u>Risk Characterization.</u> Overall, given the application of conservative risk assessment methods and assumptions, the results and conclusions of the risk assessment represent a sound, defensible characterization of potential current and future risks to human health.

3.2 Ecological Risk Evaluation

Ecological risks associated with Site 04 are negligible due to the limited habitat at the AMSA 68 (G) facility. Additionally, the contaminants detected at Site 04 are primarily associated with subsurface soils. The majority of the AMSA 68 (G) facility is paved or covered by a building.

The sparsely grassed area in the immediate vicinity of the Site 04 - PDA would provide a relatively low quality habitat (i.e., maintained grass) for ecological receptors. Higher quality habitat is available in other areas nearby (e.g., off-property wooded buffer strip and adjacent properties) that have not been affected by activities at the AMSA 68 (G) facility. Investigation results indicate that contaminants detected at Site 04 are primarily associated with subsurface soils (greater than 6 inches in depth), and exposures of ecological receptors to subsurface soils are presumed to be negligible.

Therefore, it is unlikely that surface soil in the vicinity of the Site 04 - PDA would pose any significant risk to resident or migratory species.

Table 3-1 Summary of Remedial Investigation Explorations and Analyses Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

									Analysis/Method						
Site No.	Media	Loc Name	Field Sample Id	Sample Collection Method	Field Sample Date	Top Depth (ft,bgs)	Bottom Depth (ft,bgs)	Used in Risk Assessment?	VOCs /8260B	SVOCs /8270C Modified	MADEP EPH	MADEP VPH	GRO /8015M	DRO /8015M	Lead /6020
04	SOIL	SS-01	RI22-SBS0102	GeoProbe™	1/19/2006	1	2	Yes	Х		Х	Χ			Х
04	SOIL	SS-02	RI22-SBS0202	GeoProbe™	1/18/2006	1	2	Yes	Х		Х	Χ			Χ
04	SOIL	SS-03	RI22-SBS0301	GeoProbe™	1/18/2006	0	1	Yes	Х		Х	Χ			Х
04	SOIL	SS-04	RI22-SBS0402	GeoProbe™	1/19/2006	1	2	Yes	Х		Х	Χ			Х
04	SOIL	SS-05	RI22-SBS0502	GeoProbe™	1/18/2006	1	2	Yes	Х		Х	Χ			Χ
04	SOIL	SS-06	RI22-SBS0601	GeoProbe™	1/19/2006	0	1	Yes	Х		Х	Χ			Χ
04	SOIL	SS-06	RI22-SBS0603	GeoProbe™	1/19/2006	2	3	Yes	Х		Х	Χ			Χ
04	SOIL	SS-07	RI22-SBS0702	GeoProbe™	1/19/2006	1	2	Yes	Х		Х	Χ			Χ
04	SOIL	SS-07	RI22-SBS0711	GeoProbe™	1/25/2006	10	11	Yes	Х		Х	Χ			Χ
04	SOIL	SS-08	RI22-SBS0802	GeoProbe™	1/19/2006	1	2	Yes	Х		Х	Χ			Х
04	SOIL	SS-09	RI22-SBS0902	GeoProbe™	1/24/2006	1	2	Yes	Х		Х	Χ			Х
04	SOIL	SS-10	RI22-SBS1002	GeoProbe™	1/25/2006	1	2	Yes	Х		Х	Χ			Х
04	SOIL	SS-11	RI22-SSS1100	GeoProbe™	5/10/2007	0	1	Yes [1]	Х				Х	Х	
04	SOIL	SS-12	RI22-SSS1201	GeoProbe™	5/10/2007	1	2	Yes	Х				Х	Х	
04	SOIL	SS-13	RI22-SSS1301	GeoProbe™	5/10/2007	1	2	Yes	Х				Χ	Х	
04	SOIL	SS-14	RI22-SSS1401	GeoProbe™	5/10/2007	1	2	Yes	Х				Х	Х	
04	SOIL	SS-15	RI22-SSS1501	GeoProbe™	5/10/2007	1	2	Yes	Х				Х	Х	
04	SOIL	SS-16	RI22-SSS1600	GeoProbe™	5/10/2007	0	1	Yes	Х				Х	Х	
04	SOIL	SS-17	RI22-SSS1701	GeoProbe™	5/11/2007	1	2	Yes [1]	Х				Х	Х	
04	SOIL	SS-18	RI22-SSS1800	GeoProbe™	5/11/2007	0	1	Yes [1]	Х				Х	Х	
04	SOIL	SS-19	RI22-SSS1901	GeoProbe™	5/11/2007	1	2	Yes [1]	Х				Х	Х	
04	SOIL	SS-20	RI22-SSS2000	GeoProbe™	5/11/2007	0	1	Yes	Х				Х	Х	
04	GW	SS-01	RI22-GWS0101	GeoProbe™	1/19/2006	1	4	Yes	Х						Υ
04	GW	SS-02	RI22-GWS0201	GeoProbe™	1/18/2006	1	4	Yes	Х						Υ
04	GW	SS-03	RI22-GWS0301	GeoProbe™	1/18/2006	0.3	4	Yes	Х						Υ
04	GW	SS-04	RI22-GWS0401	GeoProbe™	1/19/2006	2	4	Yes	Х						Υ
04	GW	SS-05	RI22-GWS0501	GeoProbe™	1/19/2006	0.6	4	Yes	Х						Υ
04	GW	SS-06	RI22-GWS0601	GeoProbe™	1/19/2006	1.8	4	Yes	Х						Υ
04	GW		RI22-GWS0701	GeoProbe™	1/19/2006	0.4	4	Yes	Х						Υ
04	GW	SS-08	RI22-GWS0801	GeoProbe™	1/20/2006	3.5	4	Yes	Х						Υ
04	GW	SS-09	RI22-GWS0901	GeoProbe™	1/26/2006	2	12	Yes	X						Υ
04	GW	SS-10	RI22-GWS1001	GeoProbe™	1/26/2006	1	4	Yes	X						Υ
04	GW	MW-1	RI22-GWSMW101	Mon. Well	1/27/2006	10	20	No	Х						Υ
04	GW	MW-2	RI22-GWSMW201	Mon. Well	1/30/2006	9	19	No	Х						Υ
04	GW	MW-8	RI22-GWSMW801	Mon. Well	1/30/2006	6	16	No	X						Υ
04	GW	MW-14	RI22-GWSMW1401	Mon. Well	1/30/2006	2	12	Yes	Х						Υ
04	GW	MW-15	RI22-GWSMW1501	Mon. Well	1/30/2006	2	12	Yes	Х						Υ
04	GW	GP-01	RI 22 GPS 0101	GeoProbe™	5/8/2007	2.5	7.5	Yes	Х						Υ
04	GW	GP-01	RI22-GPS0114	GeoProbe™	5/17/2007	14	16	No	X						

Prepared by: RP 03/30/07 Checked by: MS 04/02/07 9/18/2007

Table 3-1 Summary of Remedial Investigation Explorations and Analyses Site 04 - Potential Past Disposal Area

Lincoln, Rhode Island MACTEC Engineering and Consulting, Inc.

									Analysis/Method						
Site No.	Media	Loc Name	Field Sample Id	Sample Collection Method	Field Sample Date	Top Depth (ft,bgs)	Bottom Depth (ft,bgs)	Used in Risk Assessment?	VOCs /8260B	SVOCs /8270C Modified	MADEP EPH	MADEP VPH	GRO /8015M	DRO /8015M	Lead /6020
04	GW	GP-02	RI 22 GPS 0201	GeoProbe™	5/8/2007	3.7	7.7	Yes [1]	Х						Υ
04	GW	GP-02	RI22-GPS0214	GeoProbe™	5/17/2007	14	16	No	X						
04	GW	GP-03	RI22-GPS0301	GeoProbe™	5/9/2007	3.1	5	Yes [1]	Х						Υ
04	GW	GP-04	RI22-GPS0401	GeoProbe™	5/9/2007	5.7	7.2	Yes [1]	Х						Υ
04	GW	GP-05	RI 22 GPS 0501	GeoProbe™	5/8/2007	4	8	Yes [1]	Χ						Υ
04	GW	GP-06	RI 22 GPS 0601	GeoProbe™	5/8/2007	3.6	7.2	Yes [1]	Χ						Υ
04	GW	GP-07	RI22-GPS0701	GeoProbe™	5/9/2007	4.5	8.7	Yes [1]	Χ						Υ
04	GW	MW-1	RI22-GWSMW102	Mon. Well	6/26/2007	6	16	No	Χ						
04	GW	MW-2	RI22-GWSMW202	Mon. Well	6/26/2007	6	16	No	Х						
04	GW	MW-8	RI22-GWSMW802	Mon. Well	6/27/2007	6	16	No	X						
04	GW	MW-14	RI22-GWSMW1402	Mon. Well	6/27/2007	2	12	Yes	Χ						
04	GW	MW-14D	RI22-MWS14D01	Mon. Well	5/18/2007	10	20	No	Χ						
04	GW	MW-14D	RI23-GWSMW14D02	Mon. Well	6/26/2007	10	20	No	Χ						
04	GW		RI23-GWSMW1502	Mon. Well	6/26/2007	2	12	Yes	Χ						
04			RI23-GWSMW15D02	Mon. Well	6/25/2007	10.2	15.2	No	Χ						
04	GW		RI22-GWSM2002	Mon. Well	6/26/2007	2	12	Yes	X						
04	GW		RI22-MWS20D01	Mon. Well	5/31/2007	10	20	No	X						
04	GW	MW-20D	RI23-GWSMW20D02	Mon. Well	6/26/2007	10	20	No	X						
04	GW	MW-21	RI22-GWSMW2102	Mon. Well	6/26/2007	2	12	Yes	X						
04	GW		RI23-GWSMW21D02	Mon. Well	6/26/2007	12.5	17.5	No	X						
04	GW		RI23-GWSMW2202	Mon. Well	6/27/2007	2	12	Yes	X						
04	GW		RI23-GWSMW22D02	Mon. Well	6/27/2007	12	17	No	Х						
04	GW	MW-24	RI23-GWSMW24D02	Mon. Well	6/27/2007	10	15	No	X						

NOTES:

[1] - This sample is included in the data set used to select chemicals of potential concern, but is not included in the exposure point data set used to calculate exposure point concentrations because it represents a clean perimeter sample.

bgs - below ground surface

Bkgd - background

DRO - diesel range organics

EPH - extractable petroleum hydrocarbons

ft - feet

GRO - gasoline range organics

GW - groundwater

MADEP - Massachussetts Department of Environmental Protection

PID - photoionization detector

SVOCs - semivolatile organic compounds

VOCs - volatile organic compouds

VPH - volatile petroleum hydrocarbons

X - sample collected

Y - unfiltered and filtered (total and dissolved fractions) sample collected

Prepared by: RP 03/30/07 Checked by: MS 04/02/07 9/18/2007

Table 3-2 Selection of Chemicals of Potential Concern - Soil

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

CAS Number	Chemical	Minimum (1) Concentration (Qualifier)	Maximum (1) Concentration (Qualifier)	Units	Sample ID of Maximum Concentration	Frequency of Detection	Range of Non Detects	Concentration Used for Screening (2)	Background Value (3)	Screening Toxicity Value (4)	Potential ARAR/TBC Value (5)	Potential ARAR/TBC Source	Retain as COPC?	Rationale for Contaminant Deletion or Selection (6)
	Volatile Organics	(Qualifier)	(Qualifier)	Units	Concentration	Detection	Detects	Screening (2)	value (3)	TOXICITY VAIUE (4)	value (5)	Source	COFC	Selection (6)
71-55-6	1,1,1-Trichloroethane	0.00108 J	0.00309 J	mg/kg	RI22-SBS0202	2 / 21	0.00533 - 2.79	0.00309		1200 sat			No	BSL
95-63-6	1,2,4-Trimethylbenzene	0.00134 J	1030	mg/kg	RI22-SBS0502	13 / 21	0.00599 - 0.0783	1030		5.2 nc			Yes	ASL
108-67-8	1,3,5-Trimethylbenzene	0.00453 J	326	mg/kg	RI22-SBS0502	11 / 21	0.00533 - 0.0783	326		2.1 nc			Yes	ASL
78-93-3	2-Butanone	0.00592 J	0.0646 J	mg/kg	RI22-SBS0502	4 / 18	0.0107 - 5.59	0.0646		2200 nc			No	BSL
99-87-6	4-iso-Propyltoluene	0.0166 J	56.2 J	mg/kg	RI22-SBS0502	10 / 21	0.00533 - 0.0783	56.2					Yes	NSL
67-64-1	Acetone	0.0706	0.195 J	mg/kg	RI22-SBS0502	4 / 16	0.0107 - 1.99	0.195		1400 nc			No	BSL
71-43-2	Benzene	0.000927 J	0.012 J	mg/kg	RI22-SBS0502	2 / 21	0.00533 - 2.79	0.012		0.64 ca*			No	BSL
156-59-2	Cis-1,2-Dichloroethene	0.0121 J	0.284 J	mg/kg	RI22-SBS0802	3 / 21	0.00533 - 2.79	0.284		4.3 nc			No	BSL
100-41-4	Ethyl benzene	0.00334 J	1.05	mg/kg	RI22-SBS0102	9 / 21	0.00533 - 0.697	1.05		400 sat			No	BSL
98-82-8	Isopropylbenzene	0.00601 J	25 J	mg/kg	RI22-SBS0502	11 / 21	0.00533 - 0.0783	25		57 nc			No	BSL
91-20-3	Naphthalene	0.00445 J	9.91 J	mg/kg	RI22-SBS1002	13 / 21	0.012 - 0.0783	9.91		5.6 nc			Yes	ASL
104-51-8	n-Butylbenzene	0.00136 J	53 J	mg/kg	RI22-SBS0502	9 / 21	0.00533 - 0.0797	53		240 sat			No	BSL
95-47-6	o-Xylene	0.00112 J	29.6 J	mg/kg	RI22-SBS0502	10 / 21	0.00533 - 0.697	29.6		27 nc			Yes	ASL
103-65-1	Propylbenzene	0.00934 J	77.5 J	mg/kg	RI22-SBS0502	11 / 21	0.00533 - 0.0783	77.5		240 sat			No	BSL
135-98-8	sec-Butylbenzene	0.00345 J	34 J	mg/kg	RI22-SBS0502	11 / 21	0.00533 - 0.0783	34		240 sat			No	BSL
98-06-6	tert-Butylbenzene	0.00164 J	4.8 J	mg/kg	RI22-SBS0502	8 / 21	0.00533 - 0.75	4.8		390 sat			No	BSL
108-88-3	Toluene	0.000909 J	1.12 J	mg/kg	RI22-SBS0502	9 / 21	0.00533 - 2.79	1.12		520 sat			No	BSL
156-60-5	trans-1,2-Dichloroethene	0.0947 J	0.0947 J	mg/kg	RI22-SBS0802	1 / 21	0.00533 - 2.79	0.0947		6.9 nc			No	BSL
79-01-6	Trichloroethene	0.000853 J	0.00209 J	mg/kg	RI22-SBS0502	2 / 21	0.00533 - 2.79	0.00209		0.053 ca			No	BSL
HLA0010	Xylene, m/p	0.000823 J	8.59 J	mg/kg	RI22-SBS0502	11 / 21	0.00533 - 0.157	8.59		27 nc			No	BSL
1330-20-7	Xylenes, Total	0.941 D	1.06 D	mg/kg	RI22-SSS1301	2 / 10	0.133 - 0.235	1.06		27 nc			No	BSL
	Inorganics													
7439-92-1	Lead	10.5	124	mg/kg	RI22-SBS0301	11 / 11		124		400 nc			No	BSL
	TPH													
	Diesel Range Organics	68.5	2750	mg/kg	RI22-SSS1401	5 / 10	38.7 - 47.7	2750					Yes	NSL
	Gasoline Range Organics	1.92	126 D	mg/kg	RI22-SSS1401	6 / 10	1.15 - 2.22	126					Yes	NSL
	VPH													
	Ethyl benzene	1.2	1.68	mg/kg	RI22-SBS0102	2 / 11	0.54 - 0.9	1.68		400 sat			No	BSL
	Naphthalene	1.71	11.3	mg/kg	RI22-SBS0502	7 / 11	0.67 - 0.9	11.3		5.6 nc			Yes	ASL
	o-Xylene	0.434 J	34.1	mg/kg	RI22-SBS0502	7 / 11	0.67 - 0.9	34.1		27 nc			Yes	ASL
108-88-3	Toluene	0.694 J	3.19	mg/kg	RI22-SBS0802	2 / 11	0.54 - 0.9	3.19		520 sat			No	BSL
	Xylene, m/p	0.458 J	7.95	mg/kg	RI22-SBS0502	7 / 11	0.67 - 0.9	7.95		27 nc			No	BSL
	C5-C8 Aliphatics	13	85.7	mg/kg	RI22-SBS0502	4 / 11	12 - 18	85.7					Yes	NSL
	C5-C8 Aliphatics (unadj.)	13.3	86.4	mg/kg	RI22-SBS0502	4 / 11	12 - 18	86.4					Yes	NSL
	C9-C10 Aromatics	86.4	1710	mg/kg	RI22-SBS0502	8 / 11	13 - 18	1710					Yes	NSL
	C9-C12 Aliphatics	52.1	1980	mg/kg	RI22-SBS0502	8 / 11	13 - 18	1980					Yes	NSL
HLA0260	C9-C12 Aliphatics (unadj.)	176	3730	mg/kg	RI22-SBS0502	8 / 11	13 - 18	3730					Yes	NSL

Table 3-2 Selection of Chemicals of Potential Concern - Soil

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

CAS Number		` '	Maximum (1) Concentration (Qualifier)		Sample ID of Maximum Concentration	Frequency of Detection	Range of Non Detects	Concentration Used for Screening (2)	Background	Screening Toxicity Value (4)	Potential ARAR/TBC Value (5)	Potential ARAR/TBC Source	Retain as COPC?	Rationale for Contaminant Deletion or Selection (6)
	EPH													
91-57-6	2-Methylnaphthalene	1.96	7.46	mg/kg	RI22-SBS1002	6 / 11	0.56 - 0.68	7.46		5.6 nc			Yes	ASL
83-32-9	Acenaphthene	0.498 J	0.778	mg/kg	RI22-SBS1002	4 / 11	0.56 - 0.68	0.778		370 nc			No	BSL
191-24-2	Benzo(ghi)perylene	0.465 J	2.27	mg/kg	RI22-SBS0603	9 / 11	0.58 - 0.62	2.27		230 nc			No	BSL
206-44-0	Fluoranthene	0.642	0.642	mg/kg	RI22-SBS0601	1 / 11	0.57 - 0.68	0.642		230 nc			No	BSL
86-73-7	Fluorene	0.631	1.67	mg/kg	RI22-SBS1002	5 / 11	0.56 - 0.68	1.67		270 nc			No	BSL
91-20-3	Naphthalene	0.474 J	4.8	mg/kg	RI22-SBS0502	7 / 11	0.56 - 0.68	4.8		5.6 nc			No	BSL
85-01-8	Phenanthrene	0.471 J	1.56	mg/kg	RI22-SBS0502	6 / 11	0.56 - 0.68	1.56		230 nc			No	BSL
129-00-0	Pyrene	0.491 J	0.491 J	mg/kg	RI22-SBS0601	1 / 11	0.57 - 0.68	0.491		230 nc			No	BSL
HLA0108	C11-C22 Aromatics	22.2 J	1240	mg/kg	RI22-SBS0301	11 / 11		1240					Yes	NSL
HLA0257	C11-C22 Aromatics (unadj.)	23.8 J	1240	mg/kg	RI22-SBS0301	11 / 11		1240					Yes	NSL
HLA0109	C19-C36 Aliphatics	13.1	4870	mg/kg	RI22-SBS0902	11 / 11		4870					Yes	NSL
HLA0113	C9-C18 Aliphatics	12.4	4380	mg/kg	RI22-SBS0902	11 / 11		4380				-	Yes	NSL

- (1) Minimum or maximum concentration detected in data set. Samples included in data set are identified in Table 3-1.
- (2) The concentration used for screening is the maximum detected concentration.
- (3) Background values not available.
- (4) Values are the Preliminary Remediation Goals (PRGs) obtained from USEPA Region IX dated October 2004.

Values used for screening are the residential soil PRGs for the lesser of cancer risks equal to 1E-06 or non-cancer risks equal to a hazard index of 0.1.

PRG for pyrene used for phenanthrene, benzo(g,h,i)perylene.

PRG for n-butylbenzene used for sec-butylbenzene.

- nc PRG is based on a non-cancer hazard quotient of 0.1.
- ca PRG is based on an excess lifetime cancer risk of 1 in 1 million.
- ca* where nc PRG < 100X ca PRG.
- nc[a] Value is based on a non-cancer endpoint because PRG at HI=0.1 is lower than PRG at cancer risk 1 in 1 million.
- (5) There are no applicable ARARs for this exposure point.
- (6) Analyte is selected as a COPC if the concentration used for screening exceeds the PRG or if no screening value is available.
 - BSL = Concentration used for screening is less than the screening toxicity value; the analyte was not selected as a COPC.
 - ASL = Concentration used for screening is greater than the screening toxicity value; the analyte was selected as a COPC.
 - NSL = no screening toxicity value available; the analyte was selected as a COPC.

mg/Kg = milligrams per kilogram

J - Value is estimated.

COPC = chemical of potential concern

D - Value is from a diluted sample.

Table 3-3 Selection of Chemicals of Potential Concern - Groundwater

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

	1			1			I						Rationale for
	Minimum (1)	Maximum (1)		Sample ID of			Concentration			Potential	Potential		Contaminant
	Concentration	Concentration		Maximum	Frequency of	Range of Non	Used for	Background	Screening Toxicity		ARAR/TBC	Retain as	Deletion or
Chemical	(Qualifier)	(Qualifier)	Units	Concentration	Detection	Detects	Screening (2)	Value (3)	Value (4)	Value (5)	Source	COPC?	Selection (6)
Volatile Organics	(Qualifier)	(Qualifier)	Office	Concentiation	Detection	Dotoolo	Corcorning (2)	value (o)	value (+)	value (o)	Course	00101	Coloction (o)
1.1-Dichloroethane	0.000403 J	0.0204	mg/L	RI22-GWS0801	4 / 24	0.001 : 0.001	0.0204		0.22 NC			No	BSL
1,2,4-Trimethylbenzene	0.0017	0.533	mg/L	RI22-GWS0801	14 / 24	0.001 : 0.001	0.533		0.0024 NC			Yes	ASL
1.2-Dichlorobenzene	0.000187 J	0.000187 J	mg/L	RI22-GWS0801	1 / 24	0.001 : 0.001	0.000187		0.26 NC			No	BSL
1.2-Dichloroethane	0.000396 J	0.000396 J	mg/L	RI22-GWS0901	1 / 24	0.001 : 0.001	0.000396		0.005 C			No	BSL
1,3,5-Trimethylbenzene	0.0031	0.196	mg/L	RI22-GWS1001	13 / 24	0.001 : 0.001	0.196		0.0025 NC			Yes	ASL
1,3-Dichloropropane	0.001	0.001	mg/L	RI22-GWSMW1402	1 / 24	0.001 : 0.001	0.001		0.0035 NC			No	BSL
2-Butanone	0.00393 J	0.0081 J	mg/L	RI22-GWS0801	4 / 23	0.01 : 0.025	0.0081		44 NC			No	BSL
4-iso-Propyltoluene	0.000667 J	0.0223	mg/L	RI22-GWS1001	11 / 24	0.001 : 0.001	0.0223					Yes	NSL
Acetone	0.00318 J	0.0363 J	mg/L	RI22-GWS1001	10 / 22	0.025 : 0.025	0.0363		22 NC			No	BSL
Benzene	0.000144 J	0.202 D	mg/L	RI22-GWSMW1402	14 / 24	0.001 : 0.001	0.202		0.005 C			Yes	ASL
Chlorobenzene	0.000161 J	0.00026 J	mg/L	RI22-GWS0601	2 / 24	0.001 : 0.001	0.00026		0.039 NC			No	BSL
Chloroethane	0.000692 J	0.0173	mg/L	RI22-GWS0801	4 / 24	0.001 : 0.002	0.0173		2.8 NC			No	BSL
Cis-1.2-Dichloroethene	0.000332 J	0.00514	mg/L	RI22-GWS0801	7 / 24	0.001 : 0.001	0.00514		0.021 NC			No	BSL
Ethyl benzene	0.00074 J	0.103	mg/L	RI22-GWS0801	13 / 24	0.001 : 0.001	0.103		0.7 C			No	BSL
Isopropylbenzene	0.000656 J	0.0243	mg/L	RI22-GWS0801	13 / 24	0.001 : 0.001	0.0243		0.00084 NC			Yes	ASL
Naphthalene	0.00182	0.159	mg/L	RI22-GWS0801	11 / 24	0.001 : 0.001	0.159		0.015 NC			Yes	ASL
n-Butylbenzene	0.000728 J	0.0306	mg/L	RI22-GWS1001	11 / 24	0.001 : 0.001	0.0306		0.026 NC			Yes	ASL
o-Xylene	0.00186	0.161	mg/L	RI22-GWS0801	12 / 24	0.001 : 0.001	0.161		3.3 NC			No	BSL
Propylbenzene	0.001	0.0476	mg/L	RI22-GWS0801	14 / 24	0.001 : 0.001	0.0476		0.032 NC			Yes	ASL
p-Xylene	0.0036	0.0785	mg/L	RI22-GWSMW1402	2 / 5	0.002 : 0.002	0.0785		2.2 NC			No	BSL
sec-Butylbenzene	0.000482 J	0.00911	mg/L	RI22-GWS0501	12 / 24	0.001 : 0.001	0.00911		0.025 NC			No	BSL
t-Butyl alcohol	0.0582 J	0.0582 J	mg/L	RI22-GWS0201	1 / 12	0.1 : 0.1	0.0582					No	NV
tert-Butylbenzene	0.000305 J	0.00387	mg/L	RI22-GWS1001	8 / 24	0.001 : 0.001	0.00387		0.029 NC			No	BSL
Toluene	0.000368 J	0.127	mg/L	RI22-GWS0801	10 / 24	0.001 : 0.001	0.127		0.15 NC			No	BSL
trans-1,2-Dichloroethene	0.000366 J	0.000732 J	mg/L	RI22-GWS0801	2 / 24	0.001 : 0.001	0.000732		0.018 NC			No	BSL
Vinyl chloride	0.000252 J	0.00142	mg/L	RI22-GWS0801	2 / 24	0.001 : 0.001	0.00142		0.002 C			No	BSL
Xylene, m/p	0.0013	0.344	mg/L	RI22-GWS0801	11 / 19	0.001 : 0.002	0.344		2.2 NC			No	BSL
Xylenes, Total	0.0055	0.096	mg/L	RI22-GWSMW1402	2 / 12	0.003 : 0.003	0.096		2.2 NC			No	BSL
Inorganics													
Lead (Total)	0.011	2.26	mg/L	RI22-GWS0101	16 / 18	0.01 : 0.01	2.26					No	NV
Lead (Dissolved))	0.00276	0.116	mg/L	RI22-GWS0601	11 19	0.001 : 0.01	0.116					No	NV

- (1) Minimum or maximum concentration detected in data set. Samples included in data set are identified in Table 3-1.
- (2) The concentration used for screening is the maximum detected concentration.
- (3) Background values not available.
- (4) Values are the Target Groundwater Concentrations published in Table 2c of "Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils". Values used for screening are based on the lesser of cancer risks equal to 1E-06 or non-cancer risks equal to a hazard index of 0.1.
- Value for 1,2-dichloropropane used for 1,3-dichloropropane.
 - nc PRG is based on a non-cancer hazard quotient of 0.1.
 - ca PRG is based on an excess lifetime cancer risk of 1 in 1 million.
- (5) There are no applicable ARARs for this exposure point.
- (6) Analyte is selected as a COPC if the concentration used for screening exceeds the PRG or if no screening value is available.
 - BSL = Concentration used for screening is less than the screening toxicity value; the analyte was not selected as a COPC.
 - ASL = Concentration used for screening is greater than the screening toxicity value; the analyte was selected as a COPC.
 - NSL = no screening toxicity value available; the analyte was selected as a COPC.
 - NV = Chemical not sufficiently volatile to pose a potential vapor intrusion concern.

mg/L = milligrams per liter
COPC = chemical of potential concern

- J Value is estimated.
- D Value is from a diluted sample.

Prepared by: KJC Checked by: JHP

Table 3-4 Selection of Exposure Pathways

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Points	Population	Age	Route	Analysis	of Exposure Pathway
CURRENT	Soil	Surface Soil	Site 04	Area Resident /	Adult	Dermal	None	Area residents and others do not have access to this area due to the secure nature of the military installation.
		0 - 2 ft		Trespasser		Ingestion	None	
					Child	Dermal	None	
					Adult	Ingestion Dermal	None Qualitative	Military personnel access the facility, but have limited contact with soil; evaluation of future exposures to soil is
				Commercial/Industrial Worker	Adult	Ingestion	Qualitative	inilitary personnel access the facility, but have limited contact with soil; evaluation or future exposures to soil is conservative for the current land use conditions.
		Air - Dust	Site 04	Area Resident /	Adult	Inhalation	None	conservative for the current land use conditions.
		7 5460		Trespasser	Child	Inhalation	None	1
				Commercial/Industrial	Adult	Inhalation	Qualitative	Area is grass-covered; minimal dust liberation under current conditions.
				Worker				
		Air - Vapors	Site 04	Area Resident /	Adult	Inhalation	None	
				Trespasser	Child	Inhalation	None	Military personnel access the facility, but have limited contact with soil; evaluation of future exposures to soil is conservative for the current land
				Commercial/Industrial Worker	Adult	Inhalation	Qualitative	use conditions.
	Groundwater	Groundwater	GB Aquifer	Area Resident	Adult	Dermal	None	Groundwater is Class GB and is not used for water supply. Water to facility and surrounding area is municipally-supplied.
	Groundwater	Groundwater	GB Aquilei	Alea Resident	Adult	Ingestion	None	Groundwater is class do and is not used for water supply. Water to racinty and surrounding area is municipally-supplied.
				Commercial/Industrial	Adult	Dermal	None	Groundwater is GB and is not used for water supply. Water to facility and surrounding area is municipally-supplied. No COPCs were identified
				Worker	Addit	Ingestion	None	orionwater is 30 and is not used to water supply. Water to racinity and solutionizing area is influencement supplied. No come is were definited in groundwater; therefore, there is no complete pathway to site-related contaminants in groundwater.
		Air - Vapors	GB Aquifer	Area Resident /	Adult	Inhalation	None	• • • • • • • • • • • • • • • • • • • •
				Trespasser	Child	Inhalation	None	VOCs in groundwater are not located near any occupied buildings; therefore, vapor intrusion pathway is not complete under current use
				Commercial/Industrial	Adult	Inhalation	None	conditions.
				Worker				
FUTURE	Soil	Soil	Site 04	Resident	Adult	Dermal	None	Future use is military/commercial-industrial; residential use will not occur.
		0 - 2 ft				Ingestion	None	
					Child	Dermal	None	
				B		Ingestion	None	
				Recreational	Adult	Dermal	None	Future use is military/commercial-industrial; residential use will not occur.
				Visitor	Child	Ingestion Dermal	None None	4
					Ornid	Ingestion	None	
				Commercial/Industrial	Adult	Dermal	Quantitative	Future use is military/commercial-industrial; contact with soil could occur.
				Worker		Ingestion	Quantitative	
				Construction worker	Adult	Dermal	Qualitative	Commercial/industrial worker scenario is protective for construction worker scenario.
						Ingestion	Qualitative	
		Air - Dust	Site 04	Resident	Adult	Inhalation	None	1
				Recreational Visitor	Child Adult	Inhalation Inhalation	None None	4
				recordational visitor	Child	Inhalation	None	Future use is military/commercial-industrial; liberation of soil-derived dust could occur.
				Commercial/Industrial	Adult	Inhalation	Quantitative	1
				Worker				
				Construction worker	Adult	Inhalation	Qualitative	1
			Sit - 04	5 11 1				
		Air - Vapors	Site 04	Resident	Adult Child	Inhalation Inhalation	None None	4
				Recreational Visitor	Adult	Inhalation	None	1
				1.00.0a.lonar visitol	Child	Inhalation	None	1
				Commercial/Industrial	Adult	Inhalation	Quantitative	Future use is military/commercial-industrial; release of VOCs from unsaturated surface soil could occur.
				Worker				
				Construction worker	Adult	Inhalation	Qualitative	
	Groundwater	Groundwater	GB Aquifer	Resident	Adult	Dermal	None	Groundwater is Class GB and is not used for water supply. Water to facility and surrounding area is municipally-supplied.
				Dears -tiI	A -1 - 1 s	Ingestion	None	tap water use. Residential use will not occur.
				Recreational Visitor	Adult	Dermal Ingestion	None None	Future use is military/commercial-industrial; residential use will not occur.
				VISILUI	Child	Dermal	None	
					00	Ingestion	None	
				Commercial/Industrial	Adult	Dermal	None	Groundwater in CB and is not used for water curply. Water to facility and surrounding area is municipally curplied
				Worker	<u> </u>	Ingestion	None	Groundwater is GB and is not used for water supply. Water to facility and surrounding area is municipally-supplied.
				Construction worker	Adult	Dermal	Dermal None Excavation into the groundwater table, which would require dewatering activities, etc, is unlikely. In ac	Excavation into the groundwater table, which would require dewatering activities, etc, is unlikely. In addition, construction workers would wear
						Ingestion	None	normal protective work gear (e.g., boots) in anticipation of excavations into the groundwater table.
		Air - Vapors	GB Aquifer	Area Resident /	Adult	Inhalation	None	
				Trespasser	Child	Inhalation	None	VOCs in groundwater could migrate to indoor air if a building is constructed at the Site. People who occupy the building could be exposed to
				Commercial/Industrial Worker	Adult	Inhalation	Quantitative	VOCs in groundwater via vapor intrusion to indoor air.
		l	1	vvolkel	1		1	1

Table 3-5 Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future Land Use Soil

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Scenario Timeframe: Future Land Use

Medium: Soil Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Points	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation / Model Name
Ingestion	Commercial /	Adult	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INGESTION (mg/kg-day)=
	Industrial			IR-S	Ingestion Rate of Soil	100	mg/day	USEPA, 2002b	CS-c x IR-S x FI x EF x ED x CF1 x 1/BW x 1/AT
	Worker			FI	Fraction Ingested	1	unitless	Assumption	
	Outdoor			EF	Exposure Frequency	225	day/yr	USEPA, 2002b	
				ED	Exposure Duration	25	yr	USEPA, 2002b	
				BW	Body Weight	70	kg	USEPA, 2002b	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9125	day	USEPA, 1989 / equal to ED	
				CF1	Conversion Factor	1.E-06	kg/mg		
Dermal	Commercial /	Adult	Site 04	CS	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	INTAKE-DERMAL (mg/kg-day) =
	Industrial			DAevent	Dose Absorbed Per Event	chemical-specific	mg/cm ² -event	USEPA, 2004	DAevent x SA x EF x ED x EV x 1/BW x 1/AT
	Worker			SA	Skin Surface Area Available for Contact	3300	cm ²	USEPA, 2002b	
	Outdoor			EF	Exposure Frequency	225	day/yr	USEPA, 2002b	Where DAevent =
				ED	Exposure Duration	25	yr	USEPA, 2002b	CS x AF x ABSd x CF
				EV	Events per Day	1	event/day	USEPA, 2002b	
				AF	Adherence Factor	0.2	mg/cm ² -event	USEPA, 2002b	
				ABSd	Dermal Absorption Factor	chemical-specific	unitless	USEPA, 2004	
				BW	Body Weight	70	kg	USEPA, 2002b	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
					Averaging Time (Non-Cancer)	9125	day	USEPA, 1989 / equal to ED	
				CF	Conversion Factor	1E-06	kg/mg		
Dust	Commercial /	Adult	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INHALATION (ug/m³) =
Inhalation	Industrial			CAair-dust	Concentration in Air - Dust	95% UCL	ug/m ³	Modeled from soil	CAair x ED x EFx ET x 1/AT
	Worker			EF	Exposure Frequency - outdoor	225	day/yr	USEPA, 2002b	CAair-dust=
				ED	Exposure Duration	25	yr	USEPA, 2002b	CS-c x 1/PEF x 1000 ug/mg
				ET	Exposure Time	0.33	hr/hr	USEPA, 2002b	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9125	day	USEPA, 1989 / equal to ED	
				PEF	Particulate Emission Factor	1.16E+09	m³/kg	USEPA, 1996 [1]	
Vapor	Commercial /	Adult	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INHALATION (ug/m³) =
Inhalation	Industrial				Concentration in Air - Vapor	95% UCL	ug/m ³	Modeled from soil	CAair x ED x EFx ET x 1/AT
	Worker			EF	Exposure Frequency - outdoor	225	day/yr	USEPA, 2002b	CAair-vapor=
				ED	Exposure Duration	25	yr	USEPA, 2002b	CS-c x 1/VF x 1000 ug/mg
				ET	Exposure Time	0.33	hr/hr	USEPA, 2002b	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9125	day	USEPA, 1989 / equal to ED	
				VF	Volatilization Factor	chemical-specific	m³/kg	USEPA, 1996 [1]	

USEPA, 1989. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A)"; Office of Emergency and Remedial Response; EPA-540/1-89/002 (interim final); Washington, D.C., December.

USEPA, 2002a. "Calculating UpperConfidence Limits for Exposure Point Concentrations at Hazardous Waste Sites". OSWER 9285.6-10. December.

USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December.

USEPA, 2004. "Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

[1] - Calculated as the wind erosion PEF and VF in Appendix E.

NA - Not Applicable

kg - kilograms mg - milligrams ug - micrograms hr - hour cm2 - square centimeters m3 - cubic meters

yr - year

UCL - upper confidence limit

Prepared by: JHP Checked by: KJC

Table 3-6 Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future Land Use Groundwater

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Scenario Timeframe: Future Land Use

Medium: Groundwater

Exposure Medium: Vapors in indoor air

Exposure Route	Receptor Population	Receptor Age	Exposure Points	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation / Model Name
Vapor	Commercial /	Adult	Site 04	CS-gw	Chemical Concentration in Groundwater	Maximum	mg/L		CHEMICAL INTAKE-INHALATION (ug/m³) =
Inhalation	Industrial			CAair-vapor	Concentration in Air - Vapor	Maximum	ug/m³	Modeled from groundwater [1]	CAair x ED x EFx ET x 1/AT
	Worker			EF	Exposure Frequency - outdoor	225	day/yr	USEPA, 2002b	
				ED	Exposure Duration	25	yr	USEPA, 2002b	
				ET	Exposure Time	0.33	hr/hr	USEPA, 2002b	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9125	day	USEPA, 1989 / equal to ED	

USEPA, 1989. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A)"; Office of Emergency and Remedial Response; EPA-540/1-89/002 (interim final); Washington, D.C., December. USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December.

[1] - Calculated using the Johnson-Ettinger Groundwater to Indoor Air Advanced Model (v. 3.1). Calculations are documented in Appendix E.

mg - milligrams ug - micrograms hr - hour

m³ - cubic meters yr - year

Prepared by: JHP Checked by: KJC

Table 3-7 Summary of Exposure Point Concentrations - Soil

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

							Exposure Point Concentration				
			Arithmetic			Maximum Concentration					
CAS Number	Chemical	Units	Mean (1)	UCL (distrib	bution)	(Qualifier)	EPC	Units	Statistic	Rationale	
	Volatile Organics									1	
95-63-6	1,2,4-Trimethylbenzene	mg/kg	92.7	156	NP	1030	156	mg/kg	UCL - 95% KM (BCA)	(3)	
108-67-8	1,3,5-Trimethylbenzene	mg/kg	22.1	174	NP	326	174	mg/kg	UCL - 99% KM (Chebyshev)	(3)	
99-87-6	4-iso-Propyltoluene	mg/kg	4.70	30.7	NP	56.2 J	30.7	mg/kg	UCL - 99% KM (Chebyshev)	(3)	
91-20-3	Naphthalene	mg/kg	1.67	8.44	NP	9.91 J	8.44	mg/kg	UCL - 99% KM (Chebyshev)	(3)	
95-47-6	o-Xylene	mg/kg	2.05	15.7	NP	29.6 J	15.7	mg/kg	UCL - 99% KM (Chebyshev)	(3)	
	TPH										
HLA0026	Diesel Range Organics	mg/kg	941	1040	NP	2750	1040	mg/kg	UCL - 95% KM (t)	(3)	
HLA0025	Gasoline Range Organics	mg/kg	32.7	45.2	NP	126 D	45.2	mg/kg	UCL - 95% KM (BCA)	(3)	
	VPH										
91-20-3	Naphthalene	mg/kg	5.80	6.28	NP	11.3				(4)	
95-47-6	o-Xylene	mg/kg	6.74	10.6	NP	34.1				(4)	
HLA0155	C5-C8 Aliphatics	mg/kg	33.2	33.5	NP	85.7	33.5	mg/kg	UCL - 95% KM (t)	(3)	
HLA0259	C9-C10 Aromatics	mg/kg	481	1025	NP	1710	1025	mg/kg	UCL - 95% KM (Chebyshev)	(3)	
HLA0154	C9-C12 Aliphatics	mg/kg	433	1082	NP	1980	1082	mg/kg	UCL - 95% KM (Chebyshev)	(3)	
	EPH										
91-57-6	2-Methylnaphthalene	mg/kg	4.68	4.68	NP	7.46	4.68	mg/kg	UCL - 95% KM (t)	(3)	
HLA0108	C11-C22 Aromatics	mg/kg	347	796	G	1240	796	mg/kg	UCL - 95% Approx. Gamma	(3)	
HLA0109	C19-C36 Aliphatics	mg/kg	1265	4247	G	4870	4247	mg/kg	UCL - 95% Adj. Gamma	(3)	
HLA0113	C9-C18 Aliphatics	mg/kg	1380	4699	G	4380	4380	mg/kg	Maximum	(2)	

- (1) Arithmetic mean is calculated as the arithmetic mean of detected concentrations. Samples included in data set are identified in Table 3-1.
- (2) The maximum detected concentration is used as the EPC because it is lower than the calculated 95% UCL.
- (3) UCL The 95% UCL is used as the EPC because the calculated 95% UCL is less than the maximum detected concentration.

 UCLs are calculated using ProUCL (V. 4.0); documentation of calculations is provided in Appendix E. Samples included in data set are identified in Table 3-1.
- (4) The EPC for this chemical by this method is lower than the EPC for this chemical by other analytical methods; therefore, the EPC will not be based on data for this analytical method.

mg/kg = milligrams per kilogram

EPC = Exposure Point Concentration

UCL = Upper Confidence Limit on the arithmetic mean

J - Value is estimated.

D - Value is from a diluted sample.

NP - Non-Parametric

G - Gamma

Table 3-8 Summary of Exposure Point Concentrations - Groundwater and Indoor Air

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

									Exposure Point Concentration -		
					Exposure	Point Con	centration - Grou	ndwater	Indoor Air (3)		
			Maximu	m							
			Concentra	tion							
CAS Number	Chemical	Units	(Qualifier)	(1)	EPC	Units	Statistic	Rationale	EPC	Units	
	Volatile Organics										
95-63-6	1,2,4-Trimethylbenzene	mg/L	0.533		0.533	mg/L	Maximum	(2)	0.0028	ug/m³	
108-67-6	1,3,5-Trimethylbenzene	mg/L	0.196		0.196	mg/L	Maximum	(2)	0.0010	ug/m ³	
99-87-6	4-iso-Propyltoluene	mg/L	0.0223		0.022	mg/L	Maximum	(2)	(4)		
71-43-2	Benzene	mg/L	0.202	D	0.202	mg/L	Maximum	(2)	0.0017	ug/m³	
98-82-8	Isopropylbenzene	mg/L	0.0243		0.0243	mg/L	Maximum	(2)	0.00028	ug/m³	
91-20-3	Naphthalene	mg/L	0.159		0.159	mg/L	Maximum	(2)	0.000088	ug/m³	
104-51-8	n-Butylbenzene	mg/L	0.0306		0.0306	mg/L	Maximum	(2)	0.00032	ug/m³	
103-65-1	Propylbenzene	mg/L	0.0476		0.0476	mg/L	Maximum	(2)	0.00044	ug/m³	

- (1) Samples used in data set are identified in Table 3-1.
- (2) The maximum detected concentration is used as the groundwater source EPC for modeling vapor intrusion to indoor air.
- (3) Calculated using the Johnson-Ettinger Groundwater to Indoor Air Advanced Model (V. 3.1). Model calculations are presented in Appendix E.
- (4) Chemical-physical data for this compound are not provided in the Johnson-Ettinger model; therefore, an estimated indoor air concentration was not calculated.

mg/L = milligrams per liter

EPC = Exposure Point Concentration

ug/m³ - micrograms per cubic meter

Table 3-9 Cancer Toxicity Data - Oral/Dermal

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Chemical of Potential Concern	Oral Cancer Value	Slope Factor Units	Oral Absorption Efficiency for Dermal (1)	Absorbed Cance for Dern Value	•	Weight of Evidence/ Cancer Guideline Description	Oral Cancer	Slope Factor Date(s)
VOLATILES								
1,2,4-Trimethylbenzene	ND			ND		ND		
1,3,5-Trimethylbenzene	ND			ND		ND		
Benzene	5.5E-02	(mg/kg/day) -1	100%	5.5E-02	(mg/kg/day) -1	Known carcinogen	IRIS	July, 2007
Butylbenzene, n-	ND			ND		ND		
Isopropylbenzene	NA			NA		Cannot be determined	IRIS	July, 2007
Isopropyltoluene	ND			ND		ND		
Propylbenzene	ND			ND		ND		
Xylenes (total)	NA			NA		Inadequate evidence	IRIS	July, 2007
SEMIVOLATILES								
2-Methylnaphthalene	NA			NA		Inadequate evidence	IRIS	July, 2007
Naphthalene	NA		89%	NA		Cannot be determined	IRIS	July, 2007

Notes:

In accordance with OSWER 9285.7-53, chronic RfDs are identified from the following heirarchy of sources:

Tier 1:

IRIS = Integrated Risk Information System: July, 2007

Tier 2:

PPRTV = Preliminary Peer-Reviewed Reference Toxicity Value April, 2007 Obtained from Region III RBC Table

Tier 3:

HEAST= Health Effects Assessment Summary Tables: FY 1997 Verified using Region IX PRG and/or Region III RBC Table

CALEPA - California Environmental Protection Agency April, 2007

In addition, provisional RfDs developed by NCEA are presented for informational purposes and to be used on a case-by-case basis:

NCEA = National Center for Environmental Assessment:

April, 2007

Obtained from Region III RBC Table

(1) Values obtained from RAGS Volume 1 (Part E, Supplemental Guidance for Dermal Risk Assessment, Interim Guidance) (EPA, 2004)
Per this guidance, a value of 100% is used for analytes without published values.

(2) Adjusted Dermal SF = Oral SF / Oral to Dermal Adjustment Factor. Per RAGS Part E (USEPA, 2004), adjustments are only performed for chemicals that have an oral absorption efficiency of less than 50%.

Weight of Evidence:

A - Human carcinogen

B1 - Probable human carcinogen - indicates that limited human data are available

B2 - Probable human carcinogen - indicates sufficient evidence in animals and inadequate or no evidence in humans

C - Possible human carcinogen

D - Not classifiable as a human carcinogen

mg = milligram

kg = kilogram

BW = body weight

ND = no data available

Table 3-10 Cancer Toxicity Data - Inhalation

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Chemical	Unit R	isk	Inhalation Cance	er Slope Factor (1)	Weight of Evidence/	Unit Risk: Inhalation Cancer Slope Factor		
of Potential Concern	Value	Value Units Value Units		Cancer Guideline Description	Source(s)	Date(s)		
VOLATILES								
1,2,4-Trimethylbenzene	ND		ND		ND			
1,3,5-Trimethylbenzene	ND		ND		ND			
Benzene	7.80E-06	(ug/m ³) ⁻¹	2.8E-02	(mg/kg/day) -1	Known human carcinogen	IRIS	July, 2007	
Butylbenzene, n-	ND		ND		ND			
Isopropylbenzene	NA		NA		Cannot be determined	IRIS	July, 2007	
Isopropyltoluene	ND		ND		ND			
Propylbenzene	ND		ND		ND			
Xylenes (total)	NA		NA		Inadequate data	IRIS	July, 2007	
SEMIVOLATILES								
2-Methylnaphthalene	NA		NA		Inadequate	IRIS	July, 2007	
Naphthalene	NA		NA		Cannot be determined	IRIS	July, 2007	

Notes:

In accordance with OSWER 9285.7-53, chronic RfDs are identified from the following heirarchy of sources:

Tier 1:

IRIS = Integrated Risk Information System: July, 2007

Tier 2:

PPRTV = Preliminary Peer-Reviewed Reference Toxicity Value

April, 2007

Obtained from Region III RBC Table

B2 - Probable human carcinogen - indicates sufficient evidence in animals

Tier 3: HEAST= Health Effects Assessment Summary Tables: FY 1997

April, 2007

April, 2007

Verified using Region IX PRG and/or Region III RBC Tabl

and inadequate or no evidence in humans

D - Not classifiable as a human carcinogen

B1 - Probable human carcinogen - indicates that limited human data are availabl

In addition, provisional RfDs developed by NCEA are presented for informational purposes and to be used on a case-by-case basis:

Obtained from Region III RBC Table

mg = milligram

Checked by: JHP 04/24/07

A - Human carcinogen

C - Possible human carcinogen

Weight of Evidence:

(1) - Inhalation cancer dose-response values are typically published as unit risk values. Unit risk values

may be converted to slope factors using the following equation (HEAST, 1997):

Adjustment = 70 kg [adult body weight] * 1000 ug/mg [conversion factor] / 20 m3/day [inhalation rate]

and: Inhalation Slope Factor = Unit Risk * Adjustment

CALEPA - California Environmental Protection Agency

NCEA = National Center for Environmental Assessment:

ug = microgram kg = kilogram

m³ = cubic meter

BW = body weight

ND = no data available

Table 3-11 Non-Cancer Toxicity Data - Oral/Dermal

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Chemical	Chronic/	Oral F	RfD	Oral Absorption	Adjusted De	rmal RfD (2)	RfD (2) Primary Target Organ or System / Critical Effect Combined		RfD: Target Organ(s	
of Potential	Subchronic	Value	Units	Efficiency for Dermal (1)	Value	Units		Uncertainty/Modifying	Source(s)	Date(s)
Concern								Factors		
VOLATILES										
1,2,4-Trimethylbenzene	chronic	5.0E-02	mg/kg/day	100%	5.0E-02	mg/kg/day			PPRTV	September, 2004
	subchronic	5.0E-02	mg/kg/day	100%	5.0E-02	mg/kg/day			Chronic	
1,3,5-Trimethylbenzene	chronic	5.0E-02	mg/kg/day	100%	5.0E-02	mg/kg/day			PPRTV	September, 2004
	subchronic	5.0E-02	mg/kg/day	100%	5.0E-02	mg/kg/day			Chronic	
Benzene	chronic	4.0E-03	mg/kg/day	100%	4.0E-03	mg/kg/day	Immune system; decreased lymphocyte count	300	IRIS	July, 2007
	subchronic	4.0E-03	mg/kg/day	100%	4.0E-03	mg/kg/day	Immune system; decreased lymphocyte count	300	Chronic	
Butylbenzene, n-	chronic	1.0E-02	mg/kg/day	100%	1.0E-02	mg/kg/day			NCEA	September, 2004
	subchronic	1.0E-02	mg/kg/day	100%	1.0E-02	mg/kg/day			Chronic	
Isopropylbenzene	chronic	1.0E-01	mg/kg/day	100%	1.0E-01	mg/kg/day	Kidney; increased kidney weight	1,000/1	IRIS	July, 2007
	subchronic	1.0E-01	mg/kg/day	100%	1.0E-01	mg/kg/day	Kidney; increased kidney weight	1,000/1	Chronic	
Isopropyltoluene	chronic	ND			ND					
	subchronic	ND			ND					
Propylbenzene	chronic	4.0E-02	mg/kg/day	100%	4.0E-02	mg/kg/day			NCEA	September, 2004
	subchronic	4.0E-02	mg/kg/day	100%	4.0E-02	mg/kg/day			Chronic	
Xylenes (total)	chronic	2.0E-01	mg/kg/day	100%	2.0E-01	mg/kg/day	General toxicity; increased mortality	1,000/1	IRIS	July, 2007
	subchronic	1.0E+00	mg/kg/day	100%	1.0E+00	mg/kg/day	Nervous system; hyperactivity, decreased body weight	300	MRL	December, 2006
SEMIVOLATILES										
2-Methylnaphthalene	chronic	4.0E-03	mg/kg/day	89%	4.0E-03	mg/kg/day	Lung; pulmonary alveolar proteinosis	1,000/1	IRIS	July, 2007
	subchronic	4.0E-03	mg/kg/day	89%	4.0E-03	mg/kg/day	Lung; pulmonary alveolar proteinosis	1,000/1	Chronic	
Naphthalene	chronic	2.0E-02	mg/kg/day	89%	2.0E-02	mg/kg/day	Decreased body weight	3,000/1	IRIS	July, 2007
	subchronic	6.0E-01	mg/kg/day	89%	6.0E-01	mg/kg/day	CNS	90	MRL	December, 2006

Notes:

In accordance with OSWER 9285.7-53, chronic RfDs are identified from the following heirarchy of sources:

Tier 1:

Tier 3:

IRIS = Integrated Risk Information System: July, 2007

Tier 2:

PPRTV = Preliminary Peer-Reviewed Toxicity Value: September, 2004 Obtained from Region IX PRG Table

April, 2007 Obtained from Region III RBC Table

HEAST= Health Effects Assessment Summary Tables:

FY 1997 Verified using Region IX PRG and/or Region III RBC Table

MRL = Minimum Risk Level (ATSDR: chronic MRLs): December, 2006

In addition, provisional RIDs developed by NCEA are presented for informational purposes and to be used on a case-by-case basis: NCEA = National Center for Environmental Assessment: September, 2004 Obtained from Region IX PRG Table

April, 2007 Obtained from Region III RBC Table

Subchronic RfDs are obtained from:

- ATSDR: Intermitent MRLs
- HEAST: subchronic RfDs (from HEAST FY 1997)
- Equal to chronic RfDs when values are not published in HEAST or by ATSDR

mg = milligram

kg = kilogram

surrogate - a value for a closely related chemical is used as the RfD

BW = body weight

chronic - the chronic value is used as the subchronic RfD

ND = no data available

- (1) Values obtained from RAGS Volume 1 (Part E, Supplemental Guidance for Dermal Risk Assessment, Interim Guidance) (EPA, 2004) Per this guidance, a value of 100% is used for analytes without published values.
- (2) Adjusted Dermal RfD = Oral RfD x Oral to Dermal Adjustment Factor. Per RAGS Part E (USEPA, 2004), adjustments are only performed for chemicals that have an oral absorption efficiency of less than 50%.

Checked by: JHP 04/24/07

RA Tables xls 1 9/18/2007

Table 3-12 Non-Cancer Toxicity Data - Inhalation

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Chemical	Chronic/	Inhalation RfC (1)		Extrapolat	ted RfD (1)	Primary Target Organ or System /	Combined	RfC: Target Organ(s)	
of Potential	Subchronic	Value	Units	Value	Units	Critical Effect	Uncertainty/Modifying	Source(s)	Date(s)
Concern							Factors		
VOLATILES									
1,2,4-Trimethylbenzene	chronic	6.0E-03	mg/m3	1.7E-03	mg/kg/day			PPRTV	September, 2004
	subchronic	6.0E-03	mg/m3	1.7E-03	mg/kg/day			Chronic	
1,3,5-Trimethylbenzene	chronic	6.0E-03	mg/m3	1.7E-03	mg/kg/day			PPRTV	September, 2004
	subchronic	6.0E-03	mg/m3	1.7E-03	mg/kg/day			Chronic	
Benzene	chronic	3.0E-02	mg/m3	8.6E-03	mg/kg/day	Immune system; decreased lymphocyte count	300/1	IRIS	July, 2007
	subchronic	3.0E-02	mg/m3	8.6E-03	mg/kg/day	Immune system; decreased lymphocyte count	300/1	Chronic	
Butylbenzene, n-	chronic	ND		ND					
	subchronic	ND		ND					
Isopropylbenzene	chronic	4.0E-01	mg/m3	1.1E-01	mg/kg/day	Endocrine; increased adrenal weight	1,000/1	IRIS	July, 2007
	subchronic	4.0E-01	mg/m3	1.1E-01	mg/kg/day	Endocrine; increased adrenal weight	1,000/1	Chronic	
Isopropyltoluene	chronic	ND		ND					
	subchronic	ND		ND					
Propylbenzene	chronic	ND		ND					
	subchronic	ND		ND					
Xylenes (total)	chronic	1.0E-01	mg/m3	2.9E-02	mg/kg/day	CNS; impaired motor coordination	300/1	IRIS	July, 2007
	subchronic	7.9E+00	mg/m3	2.3E+00	mg/kg/day	Nervous system	90	MRL	December, 2006
SEMIVOLATILES									
2-Methylnaphthalene	chronic	ND		ND				IRIS	July, 2007
	subchronic	ND		ND		-			
Naphthalene	chronic	3.0E-03	mg/m3	8.6E-04	mg/kg/day	Lung/Hyperplasia and metaplasia of epithelial cells	3,000/1	IRIS	July, 2007
	subchronic	3.0E-03	mg/m3	8.6E-04	mg/kg/day	Lung/Hyperplasia and metaplasia of epithelial cells	3,000/1	IRIS	July, 2007

Notes:

In accordance with OSWER 9285.7-53, chronic RfDs are identified from the following heirarchy of sources:

Tier 1:

IRIS = Integrated Risk Information System: July, 2007

Tier 2:

PPRTV = Preliminary Peer-Reviewed Toxicity Value: September, 2004 Obtained from Region IX PRG Table

April, 2007 Obtained from Region III RBC Table

Tier 3:

HEAST= Health Effects Assessment Summary Tables: FY 1997 Verified using Region IX PRG and/or Region III RBC Table

MRL = Minimum Risk Level (ATSDR: chronic MRLs): December, 2006
REL - CALEPA February, 2005

In addition, provisional RfDs developed by NCEA are presented for informational purposes and to be used on a case-by-case basis:

NCEA = National Center for Environmental Assessment: September, 2004 Obtained from Region IX PRG Table

April, 2007 Obtained from Region III RBC Table

mg = milligram

Checked by: JHP 04/24/07

kg = kilogram ug - microgram

m3 - cubic meter

BW = body weight

Subchronic RfDs are obtained from:

- ATSDR: Intermitent MRLs

- HEAST: subchronic RfDs (from HEAST FY 1997)

- Equal to chronic RfDs when values are not published in HEAST or by

chronic - the chronic value is used as the subchronic RfD

TABLE 3-13 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS — REASONABLE MAXIMUM EXPOSURE- CURRENT/FUTURE- INDUSTRIAL/COMMERCIAL WORKER- ADUL Site 04 - Potential Past Disposal Area Lincoin, Rhode Island

CENARIO TIMEFRAME: CURRENT/FUTURE ECEPTOR POPULATION: INDUSTRIAL/COMMERICAL WORKER ECEPTOR AGE: ADULT

					EPC				ER RISK CAL	CULATIONS				CER HAZARD CAL	CULATIONS	
MEDIUM	EXPOSURE	EXPOSURE	EXPOSURE	CHEMICAL	WALLIE	LINUTO		XPOSURE	CSF/U	JNIT RISK	CANCER RISK	INTAKE/E		RfD/	RfC (1)	HAZARD
	MEDIUM	POINT	ROUTE		VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	CANCER RISK	VALUE	TRATION UNITS	VALUE	UNITS	QUOTIENT
GROUND	AIR	PLUME - INDOOR AIR	INDOOR VAPOR INHALATION	1,2,4-Trimethylbenzene	0.533	mg/l	NC	- Citario	NC	- CHITC		5.8E-04	ug/m3	6.0E+00	ug/m3	1.E-04
WATER				1,3,5-Trimethylbenzene	0.196	mg/l	NC		NC			2.0E-04	ug/m3	6.0E+00	ug/m3	3.E-05
				4-iso-Propyltoluene	0.0223	mg/l	NC		NC					ND		
				Benzene	0.202 0.0243	mg/l	1.2E-04 NC	ug/m3	7.8E-06 NC	(ug/m3)-1	1.E-09	3.5E-04 5.8E-05	ug/m3	3.0E+01 4.0E+02	ug/m3 ug/m3	1.E-05 1.E-07
				Isopropylbenzene Naphthalene	0.0243	mg/l mg/l	NC NC		NC NC			1.8E-05	ug/m3 ug/m3	3.0E+00	ug/m3	6.E-06
				n-Butylbenzene	0.0306	mg/l	NC NC		NC NC			6.6E-05	ug/m3	ND	ug/iii3	0.L=00
				Propylbenzene	0.0476	mg/l	NC		NC			9.0E-05	ug/m3	ND		
					-							-				
			EXPOSURE ROUTE TOTAL		1						1.E-09					1.E-04
		EXPOSURE POINT TOTAL	EXPOSURE ROUTE TOTAL								1.E-09					1.E-04
	EXPOSURE MEDIUM TOT.										1.E-09					1.E-04
GROUNDWA	TER TOTAL										1.E-09					1.E-04
SOIL	SOIL	SITE	INGESTION	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC			1.4E-04	mg/kg/day	5.0E-02	mg/kg/day	3.E-03
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC			1.5E-04	mg/kg/day	5.0E-02	mg/kg/day	3.E-03
				4-iso-Propyltoluene Naphthalene	30.7 8.44	mg/kg	NC NC		NC			2.7E-05 7.4E-06	mg/kg/day	ND 2.0E-02		4.E-04
				Napntnaiene o-Xylene	8. 44 15.7	mg/kg mg/kg	NC NC		NC NC			7.4E-06 1.4E-05	mg/kg/day mg/kg/day	2.0E-02 2.0E-01	mg/kg/day mg/kg/day	4.E-04 7.E-05
				2-Methylnaphthalene	4.68	mg/kg	NC NC		NC NC			4.1E-06	mg/kg/day	4.0E-03	mg/kg/day	1.E-03
				, , , , , , , , , , , , , , , , , , , ,		55									99,	
			EXPOSURE ROUTE TOTAL							1	-					7.E-03
			DERMAL	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	156 174	mg/kg	NC NC		NC NC			-		5.0E-02 5.0E-02	mg/kg/day	
				4-iso-Propyltoluene	30.7	mg/kg mg/kg	NC NC		NC NC					5.0E-02 ND	mg/kg/day	
				Naphthalene	8.44	mg/kg	NC NC		NC			6.4E-06	mg/kg/day	2.0E-02	mg/kg/day	3.E-04
				o-Xylene	15.7	mg/kg	NC		NC				3 3 ,	2.0E-01	mg/kg/day	
				2-Methylnaphthalene	4.68	mg/kg	NC		NC			3.5E-06	mg/kg/day	4.0E-03	mg/kg/day	9.E-04
			EXPOSURE ROUTE TOTAL	l .	1	ı	l .	l	1	l .		-			1	1.E-03
		EXPOSURE POINT TOTAL	EXI GOOKE NOOTE TOTAL								0.E+00					8.E-03
	EXPOSURE MEDIUM TOT.	AL									0.E+00					8.E-03
	AIR	DUST AT SITE	DUST INHALATION	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC			2.8E-05	ug/m3	6.0E+00	ug/m3	5.E-06
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC			3.1E-05	ug/m3	6.0E+00	ug/m3	5.E-06
				4-iso-Propyltoluene Naphthalene	30.7 8.44	mg/kg mg/kg	NC NC		NC NC			5.4E-06 1.5E-06	ug/m3 ug/m3	ND 3.0E+00	ug/m3	5.E-07
				o-Xylene	15.7	mg/kg	NC NC		NC NC			2.8E-06	ug/m3	1.0E+02	ug/m3	3.E-08
				2-Methylnaphthalene	4.68	mg/kg	NC		NC			8.3E-07	ug/m3	ND	-5	
			EXPOSURE ROUTE TOTAL				l									1.E-05
		EXPOSURE POINT TOTAL	EXPOSURE ROUTE TOTAL								0.E+00					1.E-05
	AIR	AMBIENT VAPORS AT SITE	AMBIENT VAPOR INHALATION	1,2,4-Trimethylbenzene	156	mg/kg	NC	I	NC	1	0.2.100	2.3E+00	ug/m3	6.0E+00	ug/m3	4.E-01
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC	1	1	6.3E+00	ug/m3	6.0E+00	ug/m3	1.E+00
				4-iso-Propyltoluene	30.7	mg/kg	NC		NC	1	1		-	ND	1	
				Naphthalene	8.44	mg/kg	NC		NC	1	1	5.7E-02	ug/m3	3.0E+00	ug/m3	2.E-02
				o-Xylene 2-Methylnaphthalene	15.7 4.68	mg/kg mg/kg	NC NC		NC NC			7.5E-01 3.1E-02	ug/m3 ug/m3	1.0E+02 ND	ug/m3	7.E-03
				2-wouly haphulaiene	4.00	myrkg	INC		INC	1	1	3.1E=02	ug/iiio	ND		
						1				1	1					
			EXPOSURE ROUTE TOTAL					•			-				•	1.E+00
		EXPOSURE POINT TOTAL	-		·			· · · · · · · · · · · · · · · · · · ·		·	0.E+00					1.E+00
COIL TOTAL	EXPOSURE MEDIUM TOT.	AL									0.E+00					1.E+00
SOIL TOTAL						TOTAL	DECEDIOS	NEW ACROS	C ALL MED	14	0.E+00	TOTAL DECER	TOD HAZADO 1	ACDOSS ALL S	4EDIA	1.E+00
						IUIAL	RECEPTOR F	KION ACKUS	S ALL MED	IA	1.E-09	TOTAL RECEP	IUK HAZAKD A	ACKUSS ALL N	Prepared by	1.E+00

(I) - Blank cells indicate that an RfD or RfC is not avalailable from the sources used to obtain dose-response data for this risk assessment. NC - Not carcinogenic by this exposure route.

NA - Not applicable; exposure route not applicable for this chemical/exposure medium.

NV - Not volatile; exposure route not complete for this chemical.

-- Not calculated; dose-response data and/or dermal absorption values are not available.

Prepared by: KJC

Section 4.0 Conclusions and Recommendations

This RI Report for Site 04 - PDA documents the results of the January 2006 and May-June 2007 investigations at the Site, presents the HHRA performed using the RI data, and provides recommendations to achieve Site Closure under CERCLA and Response Complete under DERP for Site 04. The conclusions and recommendations for Site 04 - PDA are presented in the following subsections.

4.1 Summary and Conclusions Site 04 - PDA

Field observations and analytical data indicate that surface and subsurface soils at the PDA have been impacted by past site activities. The presence of fuel-related and chlorinated solvent VOCs in near-surface soils above the water table indicate that the area was used at some point in the past to dispose of waste and/or raw fuels and solvents. Concentrations of naphthalene and TPH (calculated) exceed the RIDEM I/C DEC and/or GA LC in surface soils at the PDA.

Detected constituents in shallow (0-12 feet bgs) groundwater beneath the PDA are generally consistent with those found in soils at this site, primarily fuel-related and chlorinated VOCs. Benzene, naphthalene, and lead (filtered and unfiltered samples) concentrations in shallow groundwater from direct-push and monitoring well samples exceed the RIDEM GA GO. Unfiltered lead sample concentrations are likely attributable to suspended solids.

A HHRA was performed in accordance with CERCLA, the NCP, and applicable USEPA guidance to evaluate potential risks to receptors associated with the current military and reasonably foreseeable future commercial/industrial site use.. 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-iso-propyltoluene, naphthalene, 2-methylnaphthalene, xylenes, and petroleum hydrocarbons (DRO, GRO, VPH fractions, and EPH fractions) were retained as COPCs in soil. 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-iso-propyltoluene, benzene, isopropylbenzene, naphthalene, butylbenzene, and propylbenzene were retained as COPCs in groundwater.

The soil, groundwater, and combined soil and groundwater cancer risks are below the NCP risk range of $1x10^{-6}$ to $1x10^{-4}$, and the HI values do not exceed 1. This indicates that use of the Site 04 for full time industrial/commercial or military use, including full time worker contact with soil and full-time occupancy of a building subject to vapor intrusion of VOCs from shallow groundwater, is associated with health risks that do not exceed USEPA risk management criteria.

To evaluate whether a land use control is required to maintain risks within the USEPA risk management criteria, health risks associated with a hypothetical unrestricted residential land use of the Site were evaluated; the evaluation is presented in Appendix L. The results of that risk characterization indicate that cancer risks for residential land use are below the USEPA cancer risk range of 1x10-6 to 1x10-4, but the hazard index is greater than the threshold value of 1. Therefore, land use controls would be implemented when and if the U.S. Army transfers ownership of the property.

4.2 Recommendations

Based on the summary and conclusions presented above, No Action under CERCLA is appropriate for Site 04 because there are no unacceptable risks to receptors based on current or reasonably foreseeable future land use.

Section 5.0 References

- Agency for Toxic Substances and Disease Registry (ATSDR, 2004). Minimum Risk Levels. December, 2004. www.atsdr.cdc.gov/mrls.htm
- California Environmental Protection Agency (Cal/EPA, 2003). Cancer Slope Factors. August, 2003.
- ENSR, 1993. "Site Investigation Report, AMSA 68, Lincoln, RI." Document Number 6583-084-600. May 1993.
- KEMRON/MACTEC, 2005a. Final Sampling and Analysis Plan for AMSA 68 (G), Lincoln, RI. KEMRON Environmental Services Corporation, Inc., Atlanta, GA. December 2005.
- KEMRON/MACTEC, 2005b. Quality Assurance Project Plan for USARC-94th Sites in Rhode Island. KEMRON Environmental Services Corporation, Inc., Atlanta, GA. September 2005.
- KEMRON/MACTEC, 2007a. Site 04 Past Disposal Area Sampling and Analysis Plan Addendum, AMSA 68 (G), Lincoln, RI, KEMRON Environmental Services, Inc., Atlanta, GA. April 19, 2007.
- KEMRON/MACTEC, 2007b. Draft Site Investigation Report for Site 05.- Former Gasoline UST, AMSA 68 (G), Lincoln, RI. KEMRON Environmental Services Corporation, Inc., Atlanta, GA. September 2007.
- Massachusetts Department of Environmental Protection (MADEP), 2002. "Characterizing Risks Posed by Petroleum Contaminated Sites: Implementation of the VPH/EPH Approach" Policy WSC-02-411. Final. October, 31, 2002.
- Massachusetts Department of Environmental Protection (MADEP), 2004a. "Method for the Determination of Volatile Petroleum Hydrocarbons (VPH)"; Division of Environmental Analysis; Office of Research and Standards; Bureau of Waste Site Cleanup; Revision 1.1; May 2004.
- Massachusetts Department of Environmental Protection (MADEP), 2004b. "Method for the Determination of Extractable Petroleum Hydrocarbons (EPH)"; Division of Environmental Analysis; Office of Research and Standards; Bureau of Waste Site Cleanup; Revision 1.1; May 2004.
- Nobis, 2002. "Expanded Site Inspection, Area Maintenance Support Facility AMSA 68, Lincoln, Rhode Island." Nobis Engineering, Inc., for US Army Corps of Engineers New England District, August 2002.
- Nobis, 2004. "Final Remedial Investigation Report, Area Maintenance Support Activity Facility, AMSA 68, Lincoln, Rhode Island." Nobis Engineering, Inc., for US Army Corps of Engineers New England District, February 2004.
- RIDEM, 2004. Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Short Title: Remediation Regulations), DEM-DSR-01-93. February 2004.
- U.S. Environmental Protection Agency (USEPA), 1988. "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses;" Hazardous Site Evaluation Division; November, 1988.

References, continued

- U.S. Environmental Protection Agency (USEPA), 1989. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A)"; Office of Emergency and Remedial Response; EPA-540/1-89/002 (interim final); Washington, D.C., December.
- U.S. Environmental Protection Agency (USEPA), 1990. "National Oil and Hazardous Substances Pollution Contingency Plan"; 40 CFR Part 300; March 1990.
- U.S. Environmental Protection Agency (USEPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Standard Default Exposure Factors"; Office of Emergency and Remedial Response, Toxics Integration Branch; OSWER Directive 9285.6-03 (interim final); Washington, D.C.
- U.S. Environmental Protection Agency (USEPA), 1992. "Guidance for Data Useability in Risk Assessment (Parts A and B)"; Office of Emergency and Remedial Response; Publication 9285.7-09A; Washington, D.C.; April
- U.S. Environmental Protection Agency (USEPA), 1994. "Risk Updates", USEPA Region I, Waste Management Division; No. 2; August.
- U.S. Environmental Protection Agency (USEPA), 1995. "Risk Updates"; USEPA Region I, New England, Waste Management Division; No. 3; August.
- U.S. Environmental Protection Agency (USEPA), 1996a. "Risk Updates"; USEPA New England, Waste Management Division; No. 4; November.
- U.S. Environmental Protection Agency (USEPA), 1996b. "Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II," Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.
- U.S. Environmental Protection Agency (USEPA), 1997a. Exposure Factors Handbook, 1997.
- U.S. Environmental Protection Agency (USEPA), 1997b. Health Effects Assessment Summary Tables (HEAST), Annual Update: Office of Solid Waste and Emergency Response, EPA 540/R/97/036, PB97-921199
- U.S. Environmental Protection Agency (USEPA), 1999. "Risk Updates"; USEPA New England, Waste Management Division; No. 5; September 1999.
- U.S. Environmental Protection Agency (USEPA), 2001. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part D), Final"; Office of Emergency and Remedial Response; EPA-540/1-89/002 (interim final); Washington, D.C.; December 2001.
- U.S. Environmental Protection Agency (USEPA), 2002a. "Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites" OSWER No. 9355:4-24, December.
- U.S. Environmental Protection Agency (USEPA), 2002b. "Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites; Office of Solid Waste and Emergency Response/Office of Solid Waste and Remedial Response; OSWER 9285.6-10; December 2002

References, continued

- U.S. Environmental Protection Agency (USEPA), 2002c. "Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils"; Office of Solid Waste and Emergency Response/Office of Solid Waste and Remedial Response; November 29, 2002.
- U.S. Environmental Protection Agency (USEPA), 2002d. "User's Guide for the Integrated Exposure Uptake Biokinetic Model for Lead in Children" (USEPA 9285.7-42, May 2002).
- U.S. Environmental Protection Agency (USEPA), 2003. "Human Health Toxicity Values in Superfund Risk Assessments" OSWER No. 9285.7-53, December 2003.
- U.S. Environmental Protection Agency (USEPA), 2004a. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment, Interim)"; Office of Emergency and Remedial Response; EPA/540/R/99/013; Washington, D.C.
- U.S. Environmental Protection Agency (USEPA), 2004b. Preliminary Remediation Goals (PRG) Table. USEPA Region IX Office of Solid Waste and Emergency Response. October.
- U.S. Environmental Protection Agency (USEPA), 2006. "Integrated Risk Information System (IRIS)"; on-line data-base search; September.

APPENDIX A ADJACENT PROPERTIES MAPS

AMSA 68 (G) Adjacent Properties Information

<u>Source:</u> Town of Smithfield Tax Assessor's On-line Database (http://data.visionappraisal.com/SmithfieldRI/(S(q5mnhkitxi0wzx5501r0c1vn))/search.aspx) October 10, 2006

Map/Lot/Unit	Current Owner	Prior Owner(s)	Size (acres)
45/47	State of Rhode Island	None listed	315.9
45/47/A	U S Army Reserve/94th RSC	None listed	4.0
45/47/B	Rhode Island Airport Corporation	SEC PAW Area Industrial Development Foundation	1.07
45/83	Thyssenkrupp Materials Inc.	Criterion Metals, Inc.; Madison Sandvic Co.	8.0
45/86	National Glass Service Inc.	None listed	1.5
45/87	Pure Platinum LLC	Crossley Machine & Tool Co Inc	3.21
48/44	State of Rhode Island	None listed	58.77

U.S.G.S. 7.5 mirture series topographic quadrangle of Pawtucker, Rhode letend

LEGENO.

- A AMSA #68
- Madison-Sandvic Co
- C Former Lincoln Ofmensional Tubing.
- D Olin Hunt
- Former Hedison Manufacturing
- Carol Cable Co.
- G Grownmark Corp.
- H Speidel
- I Crossley Machine and Tool

- - 400 ----- elevation contour

Plume No.5 -

FIGURE 2-3 Adjacent Properties

APPENDIX B 2004 RI REPORT – TABLES 5.2 AND 5.3

Table 5.2 Summary of Soil Analytical Results Area Maintenance Support Activity Facility, AMSA 68, Lincoln, Rhode Island

	AOC/S	SOURCE 1				AOC/SOUR	CE 2			Dif	DEM Method 1 Soil Standards	
Sample ID	TP-3G	MW-10-20-21'	MW-6B-2-4'	MW-6D	MW-6D(24.5)	MW-6S-2-4'	MW-7-3-4'	NSB-2-3-4'	TP-6G	Residential	Industrial/Commercial	T GB
Depth	6-8'	20 - 21'	2-4'	8-10'	24.5	2-4'	3-4'	3-4'	3-5'	Direct Exposure Criteria	Direct Exposure Criteria	Leachability Criteria
Date Sampled	3/18/03	3/21/03	3/17/03	3/18/03	3/18/03	3/19/03	3/19/03	3/20/03	3/19/03	(mg/Kg)	- 1, 101 111, 101 111	(mg/Kg)
Method/Analyte												
Volatile Organic Compounds (VOCs) - (mg/Kg)												
Trichlorofluoromethane	<0.044	<0.065	0.051 J	<0.110	<0.062	<0.080	< 0.060	<0.065	< 0.059	NL NL	NL	NL.
Methylene chloride	<0.044	<0.065	<0.086	<0.110	< 0.062	<0.080	<0.060	<0.065	< 0.059	45	760	NL
Methyl tert-butyl ether	0.018 J	0.034	<0.043	<0.053	<0.031	<0.040	<0.030	0.038	0.027 J	390	10,000	100
Tetrahydrofuran	<0.220	<0.320	< 0.430	< 0.530	<0.310	< 0.400	<0.300	< 0.320	< 0.300	NL.	NL	NL
Benzene	<0.022	0.640	< 0.043	<0.053	<0.031	<0.040	<0.030	<0.032	<0.030	2.5	200	4.3
Trichloroethene	<0.022	<0.032	<0.043	<0.053	0.016 J	<0.040	<0.030	<0.032	<0.030	13	520	4.2
Toluene	0.011 J	1.200 J ³	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032	<0.030	190	10,000	54
Tetrachloroethene Ethylberizene	<0.022	<0.032	<0.043	<0.053	0.020 J	<0.040	<0.030	<0.032	<0.030	12	110	4.2
m,p-Xylene	0.026	0.160	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032	<0.030	71	10,000	62
	0.081	0.390	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032	<0.030	110 1	10000 1	NL
o-Xylene	0.032	0.130	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032	<0.030	110 1	10000 1	NL
Isopropylbenzene n-Propylbenzene	<0.022	<0.032	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032	< 0.030	27	10,000	NL
1,3,5-Trimethylbenzene	0.042	<0.032	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032	<0.030	NL,	NL NL	NL
tert-Butylbenzene	0.093 J <0.022	0.029 J <0.032	<0.043 <0.043	<0.053 <0.053	< 0.031	<0.040	<0.030	<0.032	<0.030	NL.	NL NL	NL NL
1,2,4-Trimethylbenzene	0.290 J	0.032	<0.043	~~~	< 0.031	<0.040	<0.030	<0.032	<0.030	NL NL	NL	NL VI
sec-Butylbenzene	0.290 J 0.012 J	<0.032	<0.043	<0.053 <0.053	<0.031 <0.031	<0.040 <0.040	<0.030 <0.030	<0.032	<0.030	NL NL	NL NL	NL NL
4-Isopropyltoluene	<0.012.3	<0.032	<0.043	<0.053	<0.031	<0.040	<0.030	<0.032 <0.032	<0.030 <0.030	NL NL	NL NL	NL NL
Naphthalene	0.057 J	<0.065	<0.046	<0.110	0.056 J	<0.080	<0.060	<0.065		1NL 54		·· · · · · · · · · · · · · · · · · · ·
Semi-volatile Organic Compounds (SVOCs) - (mg/Kg)	0.007 0	-0.003		~0.110	0.030 1	1 /0.000 1	\0.000	VU.003	<0.059	54	10,000	NL NL
Naphthalene	<0.260	<0.290	<0.320	<0.350	<0.300	<0.320	<0.300	<0.290	<0.300	54	10,000	NL.
2-Methylnaphthalene	<0.260	<0.290	<0.320	< 0.350	<0.300	<0.320	<0.300	<0.290	<0.300	123	10,000	NL NL
Phenanthrene	0.310	<0.290	<0.320	<0.350	<0.300	<0.320	<0.300	<0.290	<0.300	40	10,000	NL NL
Anthracene	0.060 J	<0.290	< 0.320	< 0.350	< 0.300	<0.320	< 0.300	<0.290	< 0.300	35	10,000	NL
Fluoranthene	0.540	<0.290	< 0.320	< 0.350	<0.300	<0.320	< 0.300	<0.290	< 0.300	20	10,000	NL.
Pyrene	0.460	<0.290	<0.320	<0.350	< 0.300	<0.320	<0.300	< 0.290	< 0.300	13	10,000	NL
Benz(a)arithracene	0.250 J	<0.290	<0.320	<0.350	< 0.300	<0.320	<0.300	<0.290	< 0.300	0.9	7.8	NL
Chrysene	0.270	<0.290	<0.320	<0.350	<0.300	<0.320	<0.300	<0.290	<0.300	0.4	780	NL
Di-n-octyl phthalate Benzo(b)fluoranthene	<0.260 0.300	<0.290 <0.290	<0.320	<0.350	< 0.300	<0.320	<0.300	<0.290	<0.300	NL	NL	NL NL
Benzo(k)fluoranthene	0.300 J	<0.290	<0.320 <0.320	<0.350 <0.350	<0.300 <0.300	<0.320 <0.320	<0.300 <0.300	<0.290	<0.300	0.9	7.8	NL NL
Berzo(a)pyrene	0.240 J	<0.290	<0.320	< 0.350	< 0.300	<0.320	<0.300	<0.290 <0.290	<0.300 <0.300	0.9	78 0.8	NL NL
Indeno(1,2,3-cd)pyrene	0.180 J	<0.290	<0.320	<0.350	< 0.300	<0.320	<0.300	<0.290	<0.300	0.9	7.8	NL NL
Bis(2-ethylhexyl)phthalate	< 0.260	0.089 J	<0.320	<0.350	0.160 J	<0.320	<0.300	<0.290	<0.300	46	410	NL NL
Benzo(g,h,i)perylene	0.180 J	<0.290	<0.320	< 0.350	< 0.300	<0.320	<0.300	<0.290	<0.300	0.8	10,000	NL NL
Metals (mg/Kg)												
Barium	22 J	25 J	22 J	21 J	15 J	23 J	35	20 J	25 J	5,500	10,000	NL
Cadmium	0.45 J	<0.73	<0.75	<0.083	<0.76	<0.77	< 0.74	< 0.71	< 0.74	39	1,000	NL
Chromium	9.1	3.0	5.1	6.0	16	5.6	9.1	5.6	6.4	1,400 / 390 ³	10,000/10,000°	NL.
Silver Lead	<1.8	0.56 J	<2.1	0.34 J	<2.1	<2.2	<2.1	0.58 J	<2.1	200	10,000	NL
Lead Selenium	13 3.0 J	2.6 J <12	8.8	4.5	10	5.5	3.1 J	4.5	3.4 J	150	500	NL NL
otal Petroelum Hydrocarbons (TPH) - (mg/Kg)	3.0 4	<12	<12	5.7 J	<12	<12	<12	<11	<12	390	10,000	NL
TPH	4.9	5.2 J	1 n 1	0	0	T 0 T	0	0	1 0			
Gasoline Range Organics (82608)	4.9	5.2 J	<4.3	<5.3	<3.1	<4.0	<3.0	<3.3 U.	0 <3.0			
Gasoline (8015B)	<53	<58	<64	<70	<59	<62	<61	<58	<61			
Mineral Spirits	<53	<58	<64	<70	<59	<62	<61	<58	<61			
Kerosene	<53	<58	<64	<70	<59	<62	<61	<58	<61	500	2,500	2,500
Diesel Fuel/Fuel Oil #2	<53	<58	<64	<70	<59	<62	<61	<58	<61			
Motor Oil/Hydraulic Oil	<110	<120	<130	<140	<120	<120	<120	<120	<120			
Unidentified Hydrocarbons	<110	<120	<130	<140	<120	<120	<120	<120	<120			
esticides (mg/kg)												
alpha-BHC	<0.00085	<0.00092	<0.0010	<0.0011	<0.00095	<0.0010	<0.00095	<0.00093	<0.00097	NL NL	NL	NL
4,4'-DDD	<0.0017	<0.0018	0.0020 J	<0.0023	<0.0019	<0.0021	<0.0019	<0.0019	<0.0019	NL	NL	NL.
4,4'-DDT CBs > (mg/kg)	0.0015 J	<0.0018	0.0010 J	0.0013 J	<0.0019	<0.0021	<0.0019	<0.0019	<0.0019	NL NL	NL.	NL NL
Aroclor 1254	<0.00c	<0.000	<0.024 T	40.00E	40.000	1 .0.000	.0.000	-0.000		463	423	100
Aroclor 1260	<0.026	<0.029	<0.031	<0.035	<0.030	<0.032	<0.030	<0.029	<0.030	103	10 3	10.0 3
A10001 1200	<0.026	<0.029	<0.031	<0.035	<0.030	<0.032	<0.030	<0.029	<0.030	103	10 ³	10.0 °

Relative Percent Difference (RPD) Values for duplicate samples are +/-50% difference for all parameters in soil and '+/-30% for all parameters in groundwater.

NOTES:

- J1 = Estimate (J/UJ) the positive and non-detect results for Trichloroethane and Toluene due to MS/MSD exceedances.
- J² = Estimate (J/UJ) the positive and non-detect results for gasoline range organics due to MS %REC exceedance of QC limit
- J3 = Estimate (J/UJ) the positive and non-detect results for toluene, 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, Naphthalene and Trichloroethene due to MS/MSD exceedances.
- J4 = Estimate (J/UJ) the positive and non-detect results for methylene chloride due to trip blank contamination at a concentration below the action level.
- J⁵ = Estimate (J/UJ) the positive and non-detect results for tetrahydrofuran and Arocor 1260 due to MS/MSD %RPD exceedances.
- J⁶ = Estimate (J/UJ) the positive and non-detect results for tetrahydrofuran due to LCS %REC outside QC limits.
- 1. = Standard is for total xylene concentration.
- 2. = Standard shows hexavalent chromium/trivalent chromium standard.
- 3. = Standard is for total PCB concentration.
- Results shown in **bold** indicate that concentration exceeds Method 1 Industrial/Commercial Direct Exposure Criteria Results shown in *italics* indicate that concentration exceeds Method 1 Residential Direct Exposure Criteria.

Table 5.2 Summary of Soil Analytical Results Area Maintenance Support Activity Facility, AMSA 68, Lincoln, Rhode Island

	AOC/SOURCE 3 & 5 AOC/SOURCE					AOC/SOURCE 6	}	RIDEM Method 1 Soil Standards			
Sample ID		DUP-02	NSB-3-6-8'	NSB-4-20-22	TP-1C	TP-4G	TP-5G	MW-13-6-81	Residential	Industrial/Commercial	GB
Depth	11	8-10'	6 - 8'	20-22'	5-6' & 8'	4-6'	3-5'	6-8'	Direct Exposure Criteria	Direct Exposure Criteria	Leachability Criter
Date Samplec fethod/Analyte	3/21/03	3/21/03	3/20/03	3/25/03	3/18/03	3/18/03	3/19/03	3/25/03	(mg/Kg)	, , , , , , , , , , , , , , , , , , , ,	(mg/Kg)
/olatile Organic Compounds (VOCs) - (mg/Kg)											
Trichlorofluoromethane											
Methylene chloride	0.050 J	<0.063	<3.900	<0.059	<0.059	< 0.056	<0.050	< 0.050	NL NL	NL	NL NL
Methyl tert-butyl ether	<0.051	< 0.063	<3.900	< 0.059	<0.059	<0.056	0.027 J	<0.050	45	760	NL
	0.027	<0.031	<2.000	< 0.029	<0.030	0.028 J	0.028 J	<0.025	390	10,000	100
Tetrahydrofuran Benzene	<0.260	< 0.310	<20.000	0.630 J ⁶	<0.300	<0.280	< 0.250	< 0.250	NL	ŃL	NL
Trichloroethene	0.022 J	<0.031	<2.000	< 0.029	<0.030	<0.028	<0.025	< 0.025	2.5	200	4.3
Toluene	<0.026	<0.031	<2.000	< 0.029	<0.030	<0.028	<0.025	<0.025	13	520	4.2
Tetrachloroethene	0.025 J ¹	<0.031	95.000 J	0.045	<0.030	<0.028	<0.025	<0.025	190	10,000	54
Ethylbenzene	<0.026	<0.031	<2.000	< 0.029	<0.030	<0.028	<0.025	<0.025	12	110	4.2
······································	0.028	0.025 J	42.000	<0.029	<0.030	<0.028	<0.025	<0.025	71	10,000	62
m,p-Xylene	0.041	0.022 J	150.00	0.016 J	<0.030	<0.028	<0.025	< 0.025	110 1	100001	NL
o-Xylene	<0.026	<0.031	55.000	<0.029	<0.030	<0.028	< 0.025	< 0.025	110 ¹	10000 ¹	NL.
Isopropylbenzene	<0.026	<0.031	4.000	<0.029	<0.030	<0.028	< 0.025	< 0.025	27	10,000	NL NL
n-Propylbenzene	<0.026	<0.031	15.000	<0.029	<0.030	<0.028	<0.025	<0.025	NL NL	NL NL	NL NL
1,3,5-Trimethylberizene	0.022 J	<0.031	28.000	<0.029	<0.030	<0.028	<0.025	<0.025	NL	NL NL	NL NL
tert-Butylbenzene	<0.026	<0.031	2.000	<0.029	< 0.030	<0.028	< 0.025	< 0.025	NL NL	NL NL	NL NL
1,2,4-Trimethylbenzene	0.058	0.043	89.000	<0.029	< 0.030	<0.028	<0.025	<0.025	NL.	NL	NL NL
sec-Butylberzene 4-Isopropytoluene	<0.026	< 0.031	2.200	<0.029	<0.030	<0.028	<0.025	<0.025	NL NL	NL NL	NL NL
	<0.026	<0.031	1.000 J	<0.029	<0.030	<0.028	< 0.025	<0.025	NL.	NL NL	NL NL
Naphthalene	<0.051	<0.063	11.000	<0.059	<0.059	<0.056	<0.050	< 0.050	54	10,000	NL
emi-volatile Organic Compounds (SVOCs) - (mg/Kg) Naphthalene											
2-Methylnaphthalene	<0.280	<0.280	3.600	<0.280	<0.290	<0.270	<0.260	<0.280	54	10,000	NL
Phenanthrene	<0.280	<0.280	3.500	<0.280	<0.290	< 0.270	<0.260	<0.280	123	10,000	NL
Anthracene	<0.280 <0.280	<0.280	0.080 J	<0.280	<0.290	<0.270	<0.260	<0.280	40	10,000	NL
Fluoranthene	<0.280	<0.280 <0.280	<0.270 <0.270	<0.280	<0.290	<0.270	<0.260	<0.280	35	10,000	NL
Pyrene	<0.280	<0.280	<0.270	<0.280	0.070 J	<0.270	<0.260	<0.280	20	10,000	NL
Beriz(a)anthracene	<0.280	<0.280	<0.270	<0.280 <0.280	<0.290 <0.290	<0.270	<0.260	<0.280	13	10,000	NL
Chrysene	<0.280	<0.280	<0.270	<0.280	<0.290	<0.270 <0.270	<0.260	<0.280	0.9	7.8	NL NL
Di-n-octyl phthalate	<0.280	<0.280	0.130 J	<0.280	<0.290	<0.270	<0.260 <0.260	<0.280 <0.280	0.4	780	NL NL
Benzo(b)fluoranthene	<0.280	<0.280	<0.270	<0.280	<0.290	<0.270	<0.260	<0.280	NL 0.9	<u>NL</u>	NL VI
Benzo(k)fluoranthene	<0.280	<0.280	< 0.270	<0.280	<0.290	<0.270	<0.260	<0.280	0.9	7.8 78	NL NL
Berizo(a)pyrene	<0.280	<0.280	<0.270	<0.280	<0.290	<0.270	<0.260	<0.280	0.4	0.8	NL NL
Indeno(1,2,3-cd)pyrene	<0.280	<0.280	<0.270	<0.280	<0.290	<0.270	<0.260	<0.280	0.9	7.8	NL NL
Bis(2-ethylhexyl)phthalate	<0.280	<0.280	0.078 J	<0.280	<0.290	0.085 J	< 0.260	<0.280	46	410	NL NL
Berzo(g,h,i)perylene	<0.280	<0.280	< 0.270	<0.280	<0.290	< 0.270	< 0.260	<0.280	0.8	10,000	NL.
etals:(m g/kg) Barium											
Cadmium	18 J	24 J	24 J	29	18 J	24 J	24 J	43 J	5,500	10,000	NL
Chromium	<0.70	<0.71	<0.65	< 0.67	<0.69	< 0.69	< 0.65	<0.67	39	1,000	NL
Silver	2.9	3.3	6.9	4.2	5.6	5.3	3.0	4.2	1,400 / 390 ³	10,000/10,000 ³	NL
Lead	0.44 J	0.58 J	0.47 J	<1.9	<1.9	0.31 J	<1.8	<1.9	200	10,000	. NL
Selenium	2.1 J <11	2.5 J <11	3.8	4.0	4.5	<3.4	3.1 J	3.6	150	500	NL
otal Petroelum Hydrocarbons (TPH) - (mg/Kg)			<10	<11	<11	2.9 J	4.5 J	4.2 J	390	10,000	NL
TPH	0	3,0 J	3,760 J	0	T 0 T		r				
Gasoline Range Organics (82608)	<2.5 UJ	3.0 J	3,400 J	<2.9	<3.0	0 <2.8	0	0			
Gasoline (8015B)	<55	<57	360	<56	<57	<56	<2.5 <52	<2.5 <56			
Mineral Spirits	<55	<57	<54	<56	<57	<56	<52 <52	<56			
Kerosene	<55	<57	<54	<56	<57	<56	<52 <52	<56 <56	500	2,500	2,500
Diesel Fuel/Fuel Oil #2	<55	<57	<54	<56	<57	<56	<52 <52	<56			
Motor Oil/Hydraulic Oil	<110	<110	<110	<110	<110	<110	<100	<110			
Unidentified Hydrocarbons	<110	<110	<110	<110	<110	<110	<100	<110			
sticides (mg/Kg)								113			
alpha-BHC	<0.00089	<0.00090	<0.00087	<0.00091	<0.00092	<0.00090	<0.00086	<0.00089	NL NL	NL NL	NL
4,4'-DDD	<0.0018	<0.0018	<0.0017	<0.0018	<0.0018	<0.0018	<0.0017	<0.0018	NL NL	NL NL	NL NL
4,4'-DDT	<0.0018	<0.0018	0.0013 J	<0.0018	0.0015 J	<0.0018	<0.0017	<0.0018	NL NL	NL NL	NL NL
.Bs - (mg/Kg)											170
Aroclor 1254	<0.028	<0.028	<0.027	<0.029 UJ	<0.029	<0.028	<0.027	<0.028 UJ	10 3	10 ³	10.0 ³
Aroclor 1260	<0.028	< 0.028	< 0.027	<0.029 UJ	<0.029	<0.028	<0.027	<0.028 UJ	10 3	10 ³	10.0 3

Relative Percent Difference (RPD) Values for duplicate samples are +/-50% dfference for all parameters in soil and '+/-30% for all parameters in groundwater.

NOTES:

- J¹ = Estimate (J/UJ) the positive and non-detect results for Trichloroethane and Toluene due to MS/MSD exceedances.
- J² = Estimate (J/UJ) the positive and non-detect results for gasoline range organics due to MS %REC exceedance of QC limit
- J³ = Estimate (J/UJ) the positive and non-detect results for toluene, 1,2,4-Trimethylberizene, 1,3,5-Trimethylberizene, Naphthalene and Trichloroethene due to MS/MSD exceedances.
- J⁴ = Estimate (J/UJ) the positive and non-detect results for methylene chloride due to trip blank contamination at a concentration below the action level.
- J⁵ = Estimate (J/UJ) the positive and non-detect results for tetrahydrofuran and Aroclor 1260 due to MS/MSD %RPD exceedances.
- J⁶ = Estimate (J/UJ) the positive and non-detect results for tetrahydrofuran due to LCS %REC outside QC limits.

 1. = Standard is for total xylene concentration.

 2. = Standard shows hexavalent chromium/trivalent chromium standard.

- Standard is for total PCB concentration.

Results shown in bold indicate that concentration exceeds Method 1 Industrial/Commercial Direct Exposure Criteria Results shown in italics indicate that concentration exceeds Method 1 Residential Direct Exposure Criteria.

Table 5.2 Summary of Soil Analytical Results Area Maintenance Support Activity Facility, AMSA 68, Lincoln, Rhode Island

			AOC/SOL	URCE 10			AOC/SO	URCE 13	RI	DEM Method 1 Soil Standards	
Sample ID	TP-2G	DUP-1	TP-7G	N\$B-1-2-4'	MW-8-6-8'	MW-8-20-21 ¹	MW-11-2-4'	MW-12-5-7'	Residential	Industrial/Commercial	GB
Depth		2.5-3'	1-1.5'	2-4'	6 - 8'	20 - 21'	2-4'	5-7'	Direct Exposure Criteria	Direct Exposure Criteria	Leachability Criteria
Date Sampled	3/18/03	3/18/03	3/19/03	3/19/03	3/20/03	3/20/03	3/24/03	3/24/03	(mg/Kg)		(mg/Kg)
Method/Analyte											
Volatile Organic Compounds (VOCs) - (mg/Kg)								- 1			
Trichlorofluoromethane	< 0.550	< 0.520	< 0.064	0.035 J	<0.058	< 0.057	0.048 J	<0.060	NL NL	NL NL	NL
Methylene chloride	< 0.550	<0.520	< 0.064	< 0.068	<0.058	< 0.057	< 0.066	<0.060	45	760	NL NL
Methyl tert-butyl ether	< 0.280	< 0.260	0.030 J	0.034 J	0.033	0.029	0.032 J	<0.030	390	10,000	100
Tetrahydrofuran	<2.800	<2.600	<0.320	< 0.340	<0.290	<0.280	<0.330	<0.300	NL.	NL.	NL NL
Berzene	<0.280	<0.260	<0.032	<0.034	<0.029	0.027 J	<0.033	<0.030	2.5	200	
Trichloroethene	<0.280	<0.260	<0.032	<0.034	<0.029	<0.028	<0.033	<0.030	13	520	4.3
Toluene	<0.280	<0.260	0.035 J ³	<0.034	<0.029	<0.028	<0.033				
Tetrachloroethene	<0.280	<0.260	<0.032	<0.034	<0.029	<0.028		<0.030	190	10,000	54
Ethylbenzene	<0.280	<0.260	0.140	<0.034	<0.029	<0.028	<0.033	< 0.030	12	110	4.2
m,p-Xylene							<0.033	<0.030	71	10,000	. 62
	0.510	0.750	0.710	<0.034	<0.029	<0.028	<0.033	<0.030	110 1	100001	NL
o-Xylene	<0.280	<0.260	0.490	<0.034	<0.029	<0.028	< 0.033	<0.030	110 ¹	10000 ¹	NL
Isopropylbenzene	1.500	1.800	0.350	<0.034	<0.029	<0.028	<0.033	<0.030	27	10,000	NL.
n-Propylberizene	4.800	6.000	1.200	<0.034	<0.029	<0.028	<0.033	<0.030	NL	NL NL	NL.
1,3,5-Trimethylbenzene	19.000 J	24.000 J	5.500 J ^s	<0.034	< 0.029	<0.028	<0.033	<0.030	NL	NL	NL
tert-Butylbenzene	<0.280	<0.260	0.140	< 0.034	< 0.029	<0.028	< 0.033	<0.030	NL.	NL	NL
1,2,4-Trimethylbenzene	63.000 J	77.000 J	14.00 J ³	< 0.034	0.026 J	<0.028	< 0.033	< 0.030	NL	NL-	NL
sec-Butylbenzene	2.300 J	2.900 J	0.710 J	< 0.034	< 0.029	<0.028	<0.033	<0.030	NL	NL NL	NL NL
4-Isopropytoluene	3.900 J	4.800	1.400 J	<0.034	<0.029	<0.028	<0.033	<0.030	NL	NL NL	NL.
Naphthalene	0.980 J	1.100 J	2.500 J ³	<0.068	<0.058	< 0.057	<0.066	<0.060	54	10,000	NL NL
Semi-volatile Organic Compounds (SVOCs) - (mg/Kg)				,	0.000	1 0.007	1 0.000	-0.000		10,000	IAL
Naphthalene	< 0.570	0.480	1,900	<0.320	<0.280		<0.320	<0.270	54	10,000	NL
2-Methylnaphthalene	0.350	0.300	1.600	<0.320	<0.280		<0.320	<0.270	123	10,000	NL NL
Phenanthrene	<0.300	<0.300	0.450	<0.320	<0.280		<0.320	<0.270	40	10,000	NL NL
Anthracene	<0.300	< 0.300	0.071 J	<0.320	<0.280		<0.320	<0.270	35	10,000	NL NL
Fluoranthene	<0.300	< 0.300	0.650	0.066 J	<0.280		<0.320	<0.270	20	10,000	NL NL
Pyrene	<0.300	<0.300	0.600	<0.320	<0.280		<0.320	<0.270	13	10,000	NL NL
Berz(a)anthracene	<0.300	<0.300	0.270 J	<0.320	<0.280		<0.320	<0.270	0.9	7.8	NL NL
Chrysene	<0.300	<0.300	0.370	<0.320	<0.280		<0.320	<0.270	0.4	780	NL NL
Di-n-octyl phthalate	<0.300	<0.300	<0.340	<0.320	<0.280		<0.320	<0.270	NL	NL NL	NL NL
Benzo(b)fluoranthene	<0.300	<0.300	0.530	<0.320	<0.280	-	<0.320	<0.270	0.9	7.8	NL NL
Benzo(k)fluoranthene	<0.300	<0.300	0.170 J	<0.320	<0.280		<0.320	<0.270	0.9	7.0	NL NL
Benzo(a)pyrene	<0.300	<0.300	0.350	<0.320	<0.280		<0.320	<0.270	0.4	0.8	NL.
Indeno(1,2,3-cd)pyrene	< 0.300	<0.300	0.270 J	<0.320	<0.280		<0.320	<0.270	0.9	7.8	NL NL
Bis(2-ethylhexyl)phthalate	< 0.300	0.062 J	0.290 J	<0.320	<0.280		<0.320	<0.270	46	410	NL NL
Benzo(g,h,i)perylene	<0.300	<0.300	0,300 J	<0.320	<0.280		<0.320	<0.270	0.8	10,000	NL NL
Metals (mg/Kg)	0,000	0.000	0.000 0	0.020	1 -0.200		1 0.020	-0.210 <u> </u>	0.0	10,000	INL
Barium	21 J	23 J	23 J	23 J	T 39	and the state of t	23 J	26 J	5,500	10,000	NL NL
Cadmium	<0.74	<0.72	1.2	<0.77	<0.66		<0.75	<0.70	39	1,000	NL NL
Chromium	6.7	6.2	7.1	8.3	2.9		6.0	2.1	1,400 / 390 ³	10,000/10,000 ³	NL NL
Silver	<2.1	<2.0	<2.2	0.68 J	0.53 J	 	<2.1	<2.0	200	10,000	NL NL
Lead	3.7 J	2.7 J	45	17	6.0		7.7	2.6 J	150		
Selenium	<12	<12	<13	<12	<11	+	4.7 J	2.6 J 5.2 J	390	500	NL NL
Total Petroelum Hydrocarbons (TPH) - (mg/kg)	-12	-12		1 712			n 4./ J	3.2 J	390	10,000	NL
TPH	1,300	1.620	910	0	1 o		1 0			T T	
Gasoline Range Organics (8260B)	1,300	1,300	340	<3.4 U.	J <2.9 U	1	<3.3	0 <3.0	l		
Gasoline (8015B)	7,300 <62	7,300 <59	<67	<64	<55 <	4	<5.3	<5.0 <54	l .		
Mineral Spirits	<62	<59	<67	<64	<55		<61		1		
Kerosene	<62	<59	<67	<64	~	 		<54	500	2,500	2,500
Diesel Fuel/Fuel Oil #2	<62	<59	<67	<64	<55 <55		<61	<54	1		1
Motor Oil/Hydraulic Oil	<120	<120	410	<130	<110	-	<61	<54	1	į	
Unidentified Hydrocarbons							<120	<110	ĺ		İ
Pesticides (mg/Kg)	<120	320	160	<130	<110		<120	<110			
alpha-BHC	0.002	<0,00095	T =0.0011	T =0.0040	- 00000	T	1 -0.00000	-0.00000		T	
4,4'-DDD			<0.0011	<0.0010	<.00088		<0.00099	<0.00089	NL 	NL NL	NL Ni
	<0.0019	<0.0019	<0.0022	<0.0020	<0.0018		<0.002	<0.0018	NL	NL_	NL NL
4,4'-DDT PCBs - (mg/Kg)	<0.0019	<0.0019	<0.0022	<0.0020	<0.0018	1	<0.002	<0.0018	NL	l NL	NL
	E CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL D										
				T			1				
Aroclor 1254 Aroclor 1260	<0.030 <0.030	<0.030 <0.030	0.530 0.800	<0.031 <0.031	<0.027 <0.027		<0.028 UJ <0.028 UJ	<0.028 UJ <0.028 UJ	10 ³	10 ³	10.0 ³

Relative Percent Difference (RPD) Values for duplicate samples are +/-50% difference for all parameters in soil and '+/-30% for all parameters in groundwater.

- J1 = Estimate (J/UJ) the positive and non-detect results for Trichloroethane and Toluene due to MS/MSD exceedances.
- J² = Estimate (J/UJ) the positive and non-detect results for gasoline range organics due to MS %REC exceedance of QC limit
- J3 = Estimate (J/UJ) the positive and non-detect results for toluene, 1,2,4-Trimethylberizene, 1,3,5-Trimethylberizene, Naphthalene and Trichloroethene due to MS/MSD exceedances.
- J⁴ = Estimate (J/UJ) the positive and non-detect results for methylene chloride due to trip blank contamination at a concentration below the action level.
- J⁵ = Estimate (J/UJ) the positive and non-detect results for tetrahydrofuran and Arockor 1260 due to MS/MSD %RPD exceedances.
- J⁰ = Estimate (J/UJ) the positive and non-detect results for tetrahydrofuran due to LCS %REC outside QC limits.

 1. = Standard is for total xylene concentration.

 2. = Standard shows hexavelent chromium/trivalent chromium standard.

3. = Standard is for total PCB concentration.

Results shown in bold indicate that concentration exceeds Method 1 Industrial/Commercial Direct Exposure Criteria Results shown in italics indicate that concentration exceeds Method 1 Residential Direct Exposure Criteria.

Table 5.3

Summary of Groundwater Analytical Results

Area Maintenance Support Activity Facility, AMSA 68, Lincoln, Rhode Island

	AOC/SOURCE 1				AOC/SOURCE	2			AOC/SOURCES	RIDEM GB Groundwater Objective
Analyte (units)	MW-10	MW-3	DUP-1	MW-6S	MW-6D	MW-6B	MW-7	EW-1	MW-9	(ug/L)
Volatile Organic Compounds (VC										, <u>, , , , , , , , , , , , , , , , , , </u>
Chloroethane	2.9 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NL
Acetone	420	<10	<10	<10	<10	<10	19	<10	8.0 J	NL
Methylene chloride	<5.0 UJ ²	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 UJ ²	NL
1,1-Dichloroethane	<2.0	<2.0	<2.0	2.1	1.6 J	2.2	<1.0	3.1	<2.0	NL
2-Butanone	43	<10	<10	<10	<10	<10	<10	<10	<10	NL NL
cis-1,2-Dichloroethene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2,400
Chloroform	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL NL
1,1,1- Trichloroethane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	3,100
Benzene	3,500	<1.0	<1.0	<1.0	<1.0	0.86 J	<1.0	<1.0	14	140
Trichloroethene	<2.0	<2.0	<2.0	<2.0	0.69 J	<2.0	<2.0	<2.0	<2.0	540
4-Methyl-2-pentanone	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL NL
Toluene	5,500	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	34	1,700
Ethylbenzene	460	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	23	1,600
m,p-Xylene	950	<2.0	<2.0	<2.0	<2.0	0.78 J	<2.0	<2.0	30	NL.
o-Xylene	350	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	12	NL NL
Isopropylbenzene	10	<1.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	1.9 J	NL NL
1,2,3-Trichloropropane	2.6	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL NL
n-Propylbenzene	22	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.8	NL NL
1,3,5-Trimethylbenzene	27	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	9.2	NL NL
1,2,4-Trimethylbenzene	160	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	26	NL NL
sec-Butylbenzene	0.68 J	<2.0	<2.0	<2.0	0.88 J	<2.0	<2.0	<2.0	0.77 J	NL NL
4-Isopropyltoluene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0.84 J	NL
1,4-Dichlorobenzene	<2.0	<2.0	<2.0	<2.0	0.57 J	<2.0	<2.0	<2.0	<2.0	NL NL
1,2,4-Trichlorobenzene	<2.0	<2.0	<2.0	<2.0	0.66 J	<2.0	<2.0	<2.0	<2.0	NL NL
Naphthalene	54	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	4.0 J	NL NL
Semi-volatile Organic Compound	s (SVOCs) - (ug/L - pp	b)					1		1 10	
2-Methylphenol	11	<10	<10	<10	<10	<10	4.5 J	<10	<10	NL
4-Methylphenol	15	<10	<10	<10	<10	<10	1.4 J	<10	<10	NL
Benzoic Acid	<20	<20	<20	<20	<20	<20	26	<20	<20	NL
Naphthalene	49	<10	<10	<10	<10	<10	<10	<10	<10	NL
Dimethyl phthalate	<10	<10	<10	<10	<10	1.0 J	<10	<10	<10	NL NL
Di-n-butyl phthalate	<10	<10	<10	<10	<10	1.6 J	<10	<10	<10	NL NL
Bis(2-ethylhexyl)phthalate	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL
Metals (ug/L-ppb)						4	The Market			
Arsenic	2.6 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NL
Barium	59 J	<200	<200	<200	<200	<200	<200	<200	65 J	NL NL
Pesticides (ug/L-ppb)						100				
gamma-BHC	<0.0064	<0.0064	UJ' <0.0064 UJ'	<0.0064 UJ ¹	<0.0064 UJ¹	0.019	<0.0064 UJ	<0.0064 UJ [†]	<0.0064	NL

Relative Percent Difference (RPD) Values for duplicate samples are +/-50% difference for all parameters in soil and '+/-30% for all parameters in groundwater.

NOTES:

UJ¹ = Estimate (J/UJ) the positive and non-detect results for gamma-BHC due to MS/MSD %RPD exceedances.

UJ² = Estimate (J/UJ) the positive and non-detect results for methylene chloride due to contamination detected in the Trip Blank.

Results shown in bold indicate that concentration exceeds GB Groundwater Objective.

Results shown in italics indicate that concentration exceeds Method 1 Residential Direct Exposure Criteria.

Table 5.3
Summary of Groundwater Analytical Results
Area Maintenance Support Activity Facility, AMSA 68, Lincoln, Rhode Island

	AOC/SOURCE 6		AOC/SOU	RCE 10		A	DC/SOURCE	13	Gen	eral	RIDEM GB Groundwater Objective
Analyte (units)	MW-13	MW-1	MW-2	MW-8	DUP-2	MW-4	MW-11	MW-12	MW-5	EW-3	(ug/L)
Volatile Organic Compounds (V											
Chloroethane	<5.0	<5.0	<5.0	2.3 J	2.4 J	<5.0	<5.0	<5.0	<5.0	<5.0	NL
Acetone	<10	<10	<10	57	54	<10	<10	<10	<10	<10	NL
Methylene chloride	<5.0	<5.0 UJ ²	<5.0 J ²	1.3 J ²	<5.0 UJ ²	<5.0	<5.0	<5.0	<5.0 UJ ²	<5.0	NL
1,1-Dichloroethane	<2.0	<2.0	<2.0	0.64 J	0.63 J	2.5	<2.0	<2.0	<2.0	<2.0	NL
2-Butanone	<10	<10	<10	4.1 J	4.5 J	<10	<10	<10	<10	<10	NL
cis-1,2-Dichloroethene	<2.0	<2.0	<2.0	1.2 J	1.2 J	<2.0	<2.0	<2.0	<2.0	<2.0	2,400
Chloroform	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0.53 J	<2.0	<2.0	<2.0	NL NL
1,1,1- Trichloroethane	<2.0	<2.0	<2.0	<2.0	<2.0	1.8 J	<2.0	<2.0	<2.0	<2.0	3,100
Benzene	<1.0	<1.0	<1.0	340	560	<1.0	<1.0	<1.0	<1.0	<1.0	140
Trichloroethene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	540
4-Methyl-2-pentanone	<10	<10	<10	<10	2.8 J	<10	<10	<10	<10	<10	NL
Toluene	<2.0	<2.0	<2.0	260	250	<2.0	<2.0	<2.0	<2.0	<2.0	1.700
Ethylbenzene	<2.0	<2.0	<2.0	37	35	<2.0	<2.0	<2.0	<2.0	<2.0	1,600
m,p-Xylene	<2.0	<2.0	<2.0	82	74	<2.0	<2.0	0.85 J	<2.0	0.97 J	NL
o-Xylene	<2.0	<2.0	<2.0	30	29	<2.0	<2.0	<2.0	<2.0	<2.0	NL.
Isopropylbenzene	<2.0	<2.0	<2.0	1.2 J	1.3 J	<2.0	<2.0	<2.0	<2.0	<2.0	NL.
1,2,3-Trichloropropane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL
n-Propylbenzene	<2.0	<2.0	<2.0	2.5	2.3	<2.0	<2.0	<2.0	<2.0	<2.0	NL
1,3,5-Trimethylbenzene	<2.0	<2.0	<2.0	4.8	4.4	<2.0	<2.0	<2.0	<2.0	<2.0	NL NL
1,2,4-Trimethylbenzene	<2.0	<2.0	<2.0	23	21	<2.0	<2.0	<2.0	<2.0	<2.0	NL NL
sec-Butylbenzene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL NL
4-Isopropyltoluene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL
1,4-Dichlorobenzene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL
1,2,4-Trichlorobenzene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NL.
Naphthalene	<5.0	<5.0	<5.0	12	12	<5.0	<5.0	<5.0	<5.0	<5.0	NL.
Semi-volatile Organic Compoun	ds (SVOCs) - (ug/L - ppb)							•	"	
2-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL
4-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL
Benzoic Acid	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	NL
Naphthalene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL
Dimethyl phthalate	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL
Di-n-butyl phthalate	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NL
Bis(2-ethylhexyl)phthalate	<10	<10	<10	<10	<10	1.2 J	<10	<10	<10	<10	NL.
Metals (ug/L -ppb)											
Arsenic	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NL
Barium	15 J	19 J	45 J	52 J	52 J	<200	68 J	43 J	12 J	<200	NL
Pesticides (ug/L -ppb)											
gamma-BHC	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064 UJ	<0.0064	<0.0064	<0.0064	<0.0064 UJ	NL

groundwater.

NOTES

UJ1 = Estimate (J/UJ) the positive and non-detect results for gamma-BHC due to MS/MSD %RPD exceedances.

UJ2 = Estimate (J/UJ) the positive and non-detect results for methylene chloride due to contamination detected in the Trip Blank.

Results shown in bold indicate that concentration exceeds Method 1 Industrial/Commercial Direct Exposure Criteria Results shown in italics indicate that concentration exceeds GB Groundwater Objective.

APPENDIX C EXPLORATION LOGS

APPENDIX C-1 SITE 04 SOIL BORING LOGS

SOIL BORING LOG		AOC: 04
	Maria Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Baran Ba	Boring No.: 55 ~ 0 1
Client: Kemron	Project No. 361 8 04-8122 . 02	Protection: Mod. D Completed: 1/19/06
Contractor: MACTEC	Date Started: 1/19/06	
Method: Geoptebe	Casing Size: 1.5"	PI Meter: Thermo 580 B Total Depth: 4
Ground Elev.:	Soil Drilled: Geologic (Damien)	✓ Below Ground: 1.01
Logged by: PTM/ DLC	N/X	Page 1 of:)
Screen. (ft.) Riser:	(ft.) Diam: N/A (ID) Material: PUC	rage : Oi.
DEPTH (FT) PEZZ - SB50)02 SAMPLE NUMBER PEZZ - CU-50.021 APZ Z - CU-50.021 SAMPLE DEPTH	SOIL DESCRIPTION 2" STASS TOPSO! 25" Loose, brown to brown fine SAN Some Sivt, sow med to coarse petroleum ado	10000 - 2522 10000 - 2522 10
from	filtered and a filtered gw gra a depth interval of 1 to 4 ft IVC pipe following soil boring, QUALITY A	SOIL BORING LOG

SOIL BORING LOG	AOC: 04
	Protection: Med. D
Client: Remon Project No. 3618048122.02	Protection: Mcd. D Completed: 1/18/06
Contractor: MACTEC Date Started: 1/18/56	
Method: Geoprobe Casing Size: 1.5"	PI Meter: Thermo 580B Total Depth: 41
Ground Elev .: Soil Drilled: Geologic (Darnier)	
Logged by: Pom/DLC Checked by: RP	=
Screen. Screen	Page I of: I
CENTRICATION SOUNDESCRIPTION SOUND BESCRIPTION 2" Grass + Topsoil SOME SILT S SAND Some SILT S MED SAND. Trace of MOIST. SI' Grey / Light brow Fine to med SAND The tomed SAND The	2. Ldaux2
Note: An un filtered and a filtered Gw grab from a depth interval of 1 to 4 ft bgs PVC pipe following soil boring. QUALITY	Sample were collected vsing a 1" dia slotted SOIL BORING LOG ASSURANCE PROJECT PLAN 94th RRC 2004 MACTEC. Inc.

SOIL BORING LOG		AOC: 04
	Describbe as Confidence	Boring No.: 45 - 03 Protection: Mod D
Client: Kemron	Project No. 3618048122.02	Protection: Mod. D Completed: 1/18/cc
Contractor: MACTEC	Date Started: 1/16/06 Casing Size: 1.5"	
Method: Geoprobe		PI Meter: Thermo 580 13 Total Depth: 4'
Ground Elev.: Logged by: PTM/DLC	Soil Drilled: Geologic (Damen) Checked by: RP	✓ Below Ground: 0.3
	FIR	Page 1 of: 1
	(II.) Diani. P/A (ID) Material. FOC	rage ton. t
	SOIL DESCRIPTION Z'' Grass + rapsoi) J'' coarse sand brown I'' coarse of black fine san I'' Mix of grey, blo fine sand and coars Cperrose um ador) The sand, some	25.22 - 585030 - 25.22 - 5850
Note: An unfilte	ered and a filtered GW Grab	sample were collected
from a c	lepth interval of 0.3 to 4 ft	bgs using a 1" dia.
Slotted PVC	Pipe following sill boring. QUALITY	SOIL BORING LOG ASSURANCE PROJECT PLAN
	<i>y</i>	94th RRC 2004

Client: Kempon Contractor: MacTe Date Started: 1/19/06 Completed: 1/19/06 Method: Geoprate Casing Size: 1.5" Protection: MacA D Completed: 1/19/06 Method: Geoprate Casing Size: 1.5" Protection: MacA D Completed: 1/19/06 Method: Geoprate Casing Size: 1.5" Protection: MacA D Completed: 1/19/06 Method: Geoprate Completed: 1/19/06 Protection: MacA D Protection: MacA D Completed: 1/19/06 Protection: MacA D Completed: 1/19/06 Protection: MacA D Protection: MacA D Completed: 1/19/06 Protection: MacA D Protection: MacA D Protection: MacA D Completed: 1/19/06 Protection: MacA D	SOIL BORING LOG	AOC: 04 DLC
Contractor MACTE Date Stated: 1/19/06 Method: Geoprobe Casing Size: 1.5" Method: Geoprobe Casing Size: 1.5" Pi Meter: Thermo 5/60B Ground Elev: Soil Dailed: Geo Legac Total Depth: 41' Logged by: FTM/PC Checked by: RP Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Dism: N/A (ID) Material: N/A Page 1 of: 1 Screen N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Riser: N/A (ft.) Ri		4000
Method: Geophase Casing Size: 1.5" Method: Geophase Casing Size: 1.5" Soil Drilled: Geologic Clogged by: FTM / PtC Checked by: RP Screen M/A (II.) Riser: M/A (II.) Diam:		1104.
Ground Elev: Logged by: FTM / Dec Checked by: RP Screen: P/A (ft.) Diam: N/A		
Logged by: FTM / DCC Checked by: RP Screen: N/A (It.) Riser: N/A (It.) Diam: N/A (ID) Material: N/A Page I ot: I Screen: N/A (It.) Riser: N/A (It.) Diam: N/A (ID) Material: N/A Page I ot: I South Description South Desc		THEIMO JOS
Screen: N/A (II.) Riser: N/A (II.) Diam: N/A (ID) Material: N/A Page 1 ot 1 Ball Annual Superior Management of the Sound Screen Superior Management of the Sound Screen Fine Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Some Sult Some 1 of the Sound Sound Some Sult Some 1 of the Sound Sound Some Sult Some 1 of the Sound		
Note: An in littered and a filtered GW grab Sample were callected.		
Note: Are safelled and a filtered Gw grab Sample were calcated	Screen: N/A (II.) Hiser: N/A (II.) Diant. N/A (ID) Materiat: N/A	Page Oi:
from a depth interval of 1 to 2 to 4 ft bgs. using a 1"dia. Soil BORING LOG Slotted PVC pipe following soil boring. QUALITY ASSURANCE PROJECT PLAN	Note: An unfiltered and a filtered GW grab of from a depth interval of 1 to 2 to 4	some or star of the some some some of the sound of the so

SOIL BORING LOG		AOC: 04
		Protection: Mod . a Dic
Client: Jeemson	Project No.	Protection: Mod . Q DLC Completed: 1/18/106
Contractor: MUCTEC	Date Started: 1/18/06 Casing Size: 1.5	
Method: Geoprobe		PI Meter: Thermo 580 B Total Depth: 41
Ground Elev.:	Soil Drilled: Geologic (Damien)	
Logged by: PJM/ DLC	Checked by: RP (ft.) Diam: N/A (ID) Material: FCF	∑ Below Ground: 0.6'
Screen (ft.) Riser: N	A (ft.) Diam: N/A (ID) Material:	Page I of: I
		SOLCLASS SOLCLASS ANALYTICAL SAMPLE COUSOSO 3 COLLECTED COUSOSO 3 COLLECTED COLLECTED COLLECTED COLLECTED
a depth	ed and a filtered GW grab Sample interval of 0.6 to 4 ft. bgs following Soil boring. QUALITY	SOIL BORING LOG
2004005b 1 7		94th RRC 2004 ———————————————————————————————————

Client: Lewwon Project No. 3618048122.02 Contractor: MACTEC Date Started: 1/19/06 Method: Geopte-Be Casing Size: 1.5" Ground Elev.: Soil Drilled: Geologic (Damien) Logged by: FTM/DLC Checked by: RP Screen: N/A (ft.) Riser: N/A (ft.) Diam:N/A (ID) Material: N/A	AOC: 04 Boring No.: 55-06 Protection: Mod. 'D Completed: 1/19/06 PI Meter: Thermo 580B Total Depth: 4' Below Ground: Z-5' Page (of:)
MODIFICATION IN THE PROPERTY OF THE PROPERTY	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20

Note: An unfiltered and a filtered GW grab Sample were collected from a depth interval of 2.5 to 4 ft. bgs using a 1" dia. Soil BORING LOG slotted PVC pipe following soil boring. QUALITY ASSURANCE PROJECT PLAN 94th RRC 2004

Logged by: PSM/DLC Checked by:	1.5" eologic (Damien) RP	Boring No.: Protection: Completed: PI Meter: Total Depth:	55-07 Mod. D 1/19/-6 Thermol 52 X 12 Ground: 0.4	′
	SOIL DESCRIPTION I" TEPSOI I + GRASS 8" Gravel and coorse 8" Gravel and coorse 5" light brown med to SAND 1" Grey and black me pet. ador, some gre SAND, some SILT. Grey SAND, pet ac Trace organics Loose grey Fine SAND 19" Loose, brown, f SAND, Some gr CWET)	e SAND TO COURCE SOME SOME	P.Z. 23 GWS070) R.T.22-5850702 ANALYTICAL SAMPLE COLLECTED COLLECTED	DTU: 0,1 WELL DATA
	QUALITY	S ASSURANCE	94th RR	PLAN

	SOIL BO Client: Contractor: Method: Go Ground Elev. Logged by: Screen: NA	MACTE COPTOR PSM/DI	CEC DE CE	asing S oil Drille necked	ize: ed: (by:	Project No. 3618048122.02 1/19/06 1.5" OEOTOGIC (Damien) NIX RP m: M (ID) Material: POE PM	Protection Comp PI Me Total	No.: stion: leted: No.: ster: 1 Depth:	4 65-07 9m 25 12/0 hermo 12' Ground: 0	560B
8	БЕРТН (FT)	SAMPLE DEPTH	BLOW COUNTS	RECOVERY	PID/FID (ppm)	SOIL DESCRIPTION		SOIL CLASS	ANALYTICAL SAMPLE COLLECTED	WELL DATA
		11-01		1-126	19, 159, 168	Dense med to cook SAND and GRAVEL, p odor 32" recover			RZZZ - 5850411	DTW = 0.4'
	4	rom	a de	pth	iń	a filtered GW grab terval of 0.4 to 4 ft Howing sal QUALITY to 4 ft bgs.	695	VSIN S	BIL BOR PROJE 94th F	ING LOG

SOIL BORING LOG	AOC: 04 Boring No.: \$5 - 08			
Client: Keonson Project No. 3618048122.02	Protection: Med. D			
Contractor: MACTEC Date Started: 1/19/06	Completed: 1/19/06			
Method: Geoprobe Casing Size: 1.5"	PI Meter: Thermo 580B			
Ground Elev .: Soil Drilled: Geologic (Damien) Total Depth: 4'				
Logged by: PTM / DLC Checked by: RP ☑ Below Ground: 3 5 2				
Screen: N/A (ft.) Riser: N/A (ft.) Diam: N/A (ID) Material: N/A	Page 1 of: 1 Pm			
Constitution (iii) Thousand (iii)				
MOINTENDESCRIPTION NOITHENDREAM NOTE OF THE PROPERTY SAMPLE DEPTH (FT) NOTE OF THE PROPERTY SAMPLE DEPTH NOTE OF THE	Perce 2 ha			
Note: An unfiltered and a filtered GW grab	Sample were collected			
from a depth interval of 21 to 4 ft be slotted PVC pipe following soil boring. QUALITY	SOIL BORING LOG ASSURANCE PROJECT PLAN 94th RRC 2004 MACTEC. Inc.			

SOIL BORING LOG		AOC: 04 DLC Boring No.: 5500 55-09
Client: Kzmron	Project No. 3618048122. oZ	Protection: Mod. D
Contractor: MACTEC	Date Started: 1/24/06	Completed: 1/24/06
Method: Geoprobe	Casing Size: 1.5"	PI Meter: Thermo 580B
Ground Elev.:	Soil Drilled: Geologic (Damien)	Total Depth: 12
Logged by: アケル/ ワレC		☑ Below Ground: Z'
Screen: N/A (ft.) Riser: N	V/A (ft.) Diam: N/A (ID) Material: N/A	Page of:
Secondary Control of the state	SOIL DESCRIPTION I'm grass + topsoil I'm grass + topsoil I'm brown, loose, to coarse sand Gravel, pet. of I'm dix brown fine Sand, so Silt, some Gr Pet odor I'm sand and silt, odor, wer Iom v. dense, fractor Fock, green to grey, Sand, and Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer I'm cose grey, coar Gravel, wer	Sample Wire collected

SOIL BORING LOG		AOC: 04- Boring No.: 55 - 10
	Project No. 3618048122. 02.	Protection: Med. D
Client: Kamton	Date Started: 1/25 Jou	Completed: 1/25/06
Contractor: MACTEC	Casing Size: 1.5	PI Meter: Thermo 580B
Method: Gcoprobe Ground Elev.:	Soil Drilled: Georgic (Damier)	Total Depth: 4'
Logged by: PTM/ DLC		Below Ground:
	A (ft.) Diam: MA (ID) Material: NA	Page I of: I

DEPTH (FT) SAMPLE NUMBER	SAMPLE DEPTH	BLOW COUNTS RECOVERY	(budd) chake	SOIL DESCRIPTION	SOIL CLASS	ANALYTICAL SAMPLE COLLECTED	WELL DATA
2 - 3	95 -		197, 76	LOCSC Brown FORSC SAND, GARD INC SAND, SOME SILT THE GRAVEL. 4" Dark brown, Med-dense five AND and SILT. ITTIE GRAVEL, per oder		ZI22 - 5851002	DTW: 11, 5' streen

Note: An unfiltered and a filtered Gw grab sample were collected from a depth interval of 1 to 4 ft bgs using a 1" dia. Slotted some a depth interval of 1 to 4 ft bgs using a 1" dia. Slotted some a depth interval of 1 to 4 ft bgs using a 1" dia. Slotted some soil boring. QUALITY ASSURANCE PROJECT PLAN

-MACTEC, Inc.-

0

SOIL BORING LOG	AOC: STC 04 Boring No.: SS - 11
Client: 947 PRC LINCOLN . Project No. 3618048122	Protection: Mod. D
Contractor: Geologie Date Started: 5.10.07	Completed: 5 . (0. 67
Method: Geographe Casing Size: 1.5"	PI Meter: Mini, RAE 2000
Ground Elev.: Soil Drilled: 0 - 4	Total Depth: 4:1
Logged by: Checked by:	☑ Below Ground: 2. 4
Screen: - (ft.) Riser: - (ft.) Diam: - (ID) Material: -	Page of:
SAMPLE DEPTH (FT) SAMPLE DEPTH (FT) SAMPLE DEPTH (FT) SAMPLE DEPTH (FT) SAMPLE DEPTH (FT) 10" dkbrown to bl 10" f.SAND, Some SELF.	
2 iz" fan, liftle greg s fine SAND + SILT	wet Mr
QUALIT	SOIL BORING LOG TY ASSURANCE PROJECT PLAN 94th RRC 2004 ———————————————————————————————————

Celent: 94th PEC Likelin Project No. 36/804812.2 Protection: Mod. D Contractor: Green. Method: Green. Method: Green. Contractor: Sold Drilled: 5.10.07 Method: Green. Sold Drilled: 0-4' lags Total Depth: 4' Logged by: PTM Checked by: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page 1 of: 137 0.2 12" fran and dK. brown f. Spholar Life Sith, dry 2 - 12" fran and dK. brown f. Spholar Life Sith, dry 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	SOIL BORING LOG		AOC: O	55-		04
Contractor: Greenic Date Staned: 5.10.07 Method: Greenic Casing Size: 1.5" Pi Meter: Mini, RAE Zooo Ground Elevi: Soil Drilled: 0 - 4' log 1 Checked by: DTM Checked by: DTM Checked by: Screen: - (It.) Riser: - (It.) Diam: - (ID) Material: - Page 1 of: Soil Description Soi	Client: 94Th REC	Lincoln Project No. 3618048122				
Method: Greepeld Casing Size: 1.5" Stround Elev.: Soil Drilled: 0 - 4' leq 5 Total Depth: 4' Cogged by: PSM Checked by: Below Ground: 3.1 Screen: - (It.) Pliser: - (It.) Diam: - (ID) Material: Page (of: 1) Soil Description			Completed:			
Ground Elev: _ Soil Drilled: O - 4' bqs Total Depth: 4' Degged by: PTM Checked by:			PI Meter:			2000
Checked by: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Piser: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Screen: - (ft.) Diam: - (ID) Material: - Page of: Screen: - (ft.) Page of: Scre	4-4-		Total Depth:			
Screen: - (ft.) Pilser: - (ft.) Diam: - (ID) Material: - Page \ ot: Hammon Ha	ogged by: PTM		☑ Below (Ground:	3, 1	
37 0.2" gress + topson 1		- (ft.) Diam: - (ID) Material:	Page (of:		
	3 -	37 0.2 12" tan and dk. brown SAND, lettle Gilt, dry 91.7 6" dk brown/ black f. S. 114, Some Silt, pet. od.	f. SP	ave (Rt	722-	⊘ 0 9

Client: 94	ORING LOG TO RRC LIV Greologic Teoprobe Teoprobe (It.) Riser:	Date Started: Casing Size: Soil Drilled: Checked by:	Project No. 3618048122 5.10.07 1.5" 0-4' bqs - (ID) Material: -	AOC: Boring N Protection Complet PI Meter Total De L Page	ed: 5·1 Hisi	13 0 07 RAE 2000
О С 2 3 4	SAMPLE DEPTH SAMPLE DEPTH RICHARD RICH	274 0.6 31.0 1.5'	SOIL DESCRIPTION 2-3: Graff rost Zone 3-0.8: Loamy silry Sam Trueangolar gravel. 8-1.3: Light brown film 1.3-1.9: Dark brown/bla To M. Sand Wittace Petrojerm ofor 1.9 - End: light gray/l Aine/med Sand son brown Strata in To	d. Trace deboard y sand ck silvy fine angular gravel white silvy	SOIL CLASS SOIL CLASS	WELL DATA
			AUQ	LITY ASSURAN	SOIL BOR	

SOIL BORING LOG QUALITY ASSURANCE PROJECT PLAN 94th RRC 2004

SOIL BORING LOG			AOC: Site 04 Boring No.: 55-14
Client: 94" RR		Project No. 3618048122	Protection: Mod. D
Contractor: Geologie	Date Started:	5-10-07	Completed: 5 · 1 · · · • ‡
Method: Geoprobe	Casing Size:	1.5"	PI Meter: Mini RAE Zoso
Ground Elev.:	Soil Drilled:	0-4' bas	Total Depth: 4/
Logged by: PSM	Checked by:		☑ Below Ground: 3.8
Screen: (ft.) Riser:		m: - (ID) Material: -	Page \ of:
Œ			
	BLOW COUNTS RECOVERY PID/FID (ppm)	SOIL DESCRIPTION	SOIL CLASS ANALYTICAL SAMPLE COLLECTED WELL DATA
	20"	D-1" grass + tops: 1 strabrown f. to coal SAND, trace Silt, tra	6.2
	456	10" to dk brown/blac	K, moist ML RIZZ - @ 1045
		SILT, Some Llay,	
2 -			
3 —		¥ ∃	
	1 1 1		
4		· .	
T -			
	1 1 1		
		QUALITY A	SOIL BORING LOG
			94th RRC 2004
2004005b L 7			MACTEC. Inc.

Contractor: Geologic Method: Geoprobe Ground Elev.: Logged by: P5 M Screen: (ft.) Riser:	Date Started: Casing Size: Soil Drilled: Checked by: (ft.) Diar	Project No. 3618048122- 5 · 10 · 67 1.5 " D - 4' m: - (ID) Material: -	AOC: Site Boring No.: S S Protection: Mod Completed: S. In PI Meter: Mini Total Depth: 4 Below Ground: Page of:	04 -15 . D 0. 07 PAE 2000
SAMPLE DEPTH (FT)	BECOVERY A C C C C C C C C C C C C C C C C C C	SOIL DESCRIPTION Or 1" grass + teyso T" brown/grey f. SAND, trace Grave 14" dk. brown/black 5 moist, Some Gravel, 5" dr. gray wet frace Sand, tr 1,8" Clay Clay	trace Sand	RI22- 5351501, RI22- SS MS 15 01 @ 1920
2004005b L 7		QUALITY	ASSURANCE PROJE 94th	RING LOG ECT PLAN RRC 2004 IACTEC. Inc.——

SOIL BORING LOG		AOC: Site 04
		Boring No.: SS - 16
Client: 94Th RRC		Protection: Mod. D
Contractor: Geologie	Date Started: 5 · 10 · • 7	Completed: 5.10.07
Method: Geograph	Casing Size: 1.5"	PI Meter: Mini RAE 2000
Ground Elev.:	Soil Drilled: 0-4' bqs	Total Depth:
Logged by: PTM	Checked by:	☑ Below Ground: 2.6
Screen:	- (ft.) Diam: - (ID) Material: -	Page 1 of:
Screen: (ft.) Riser:	- (ft.) Diam: - (ID) Material: - Soll Description By 1412" brown dK brown	Page 1 of: 1 Soll CLASS SOULCLASS SAMPLE COLLECTED WELL DATA WELL DATA SERVING STATE SOULCLASS SOULCLA
	QUALITY	SOIL BORING LOG ASSURANCE PROJECT PLAN 94th RRC 2004 —MACTEC. Inc.

SOIL BORING LOG		AOC: Site 04 Boring No.: SS-17
Client: 94th KRC	Project No. 3618 048122	Protection: Mod. D
Contractor: Geologic	Date Started: 5 · 11 · • 7	Completed: 5 · 11 · 57
Method: Geoprobe	Casing Size: 1.5"	PI Meter: Mihi RAE 2000
Ground Elev.:	Soil Drilled: 0 - 4' bas	Total Depth:
Logged by: PTM	Checked by:	☑ Below Ground: 2.2.
Screen: (ft.) Riser:	► (ft.) Diam: ► (ID) Material: ►	Page of: \
Вертн (FT)	SOIL DESCRIPTION 22" 0.1 OF 1" Grass & fopsoi SAND and GRAVEL, 0.1 12" reddish brown f. to SAND, Some Sitt, Some wet @ 1.8"	e dry special street special
	QUALITY #	SOIL BORING LOG ASSURANCE PROJECT PLAN 94th RRC 2004

Screen: — (ft.) Riser. (ft.) Diam: (ID) Material: Page Control ed: 5 Solr Crass Solr Crass ANALYTICAL SAMPLE	· 1(· 0 a · RAE f' : . 3.0	2000	
Method: Ground Elev.: Ground Elev.: Soil Drilled: Checked by: Screen: — (ft.) Riser. (ft.) Diam: (ID) Material: Page Soil Description Soil Description	solr crass of: analytical saware	4. RAE 4. 3.0	2000
Method: Ground Elev.: Ground Elev.: Soil Drilled: Checked by: Screen: — (ft.) Riser. (ft.) Diam: (ID) Material: Page (14) Huday Sawyard Burgara Soil Description Soil Description PI Meter Soil Description Page (15) PI Meter Soil Description	solr crass analytical solve crass Analytical solve crass	. 3.0	
Logged by: P5M Checked by: Screen: — (ft.) Riser: (ft.) Diam: (ID) Material: — Page Checked by: Screen: — (ft.) Riser: (ft.) Diam: (ID) Material: — Page Checked by: Solid Description Checked by: Checked by: Solid Description Checked by: Check	SOIL CLASS ANALYTICAL SAMPLE	3.0	,
Screen: — (ft.) Riser. (ft.) Diam: (ID) Material: Page Streen: — (ft.) Riser. (ft.) Diam: (ID) Material: Page BECONGEN A BECONEWA SOIL DESCRIPTION SOIL DESCRIPTION O - 2" 3" 3" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5"	SOIL CLASS ANALYTICAL SAMPLE		-
SAMPLE NUMBER SAMPLE DEPTH SAMPLE DEPTH BLOW COUNTS RECOVERY ROLL COUNTS RECOVERY ACOLUTE SAMPLE NUMBER SAMPLE NUMBER SAMPLE NUMBER SAMPLE NUMBER	SOIL CLASS ANALYTICAL SAMPLE	COLLECTED WELL DATA	
D-2" grass + topsoil	5W	COLLECTED WELL DATA	
2 Sand, morst, trace Organic 20" of ive / brown f. SAND	ML RYSS	[22 - 55 17 01	@ b3

SOIL BORING LOG					AOC:	UST TO SE	Site		
A STATE OF THE STA					Boring		Mod.	20	
Client: 94 Th RRC		Control of the Contro	61804812	2	Protect				
Contractor: Geologie	Date Started:	5.11.07					5.11	246	
Method: Geoprobe	Casing Size:	1.5"			PI Mete		Mini	ICAE	1000
Ground Elev.:	Soil Drilled:	0-4'	109.5		Total D		4'	- Aug	
Logged by: PSM/TR	1.	1101				elow G	Ground: 3.	he 3	.4
Screen: (ft.) Riser:	- (ft.) Dia	m:	Material:		Page		of:		
	RECOVERY O. O. PID/FID (ppm)	2"-11" M/ Some Fi 11"- '9" , 521 The day 35" 1.9"-2	SOIL DESCRIPTIVE MAT. 1 (1) C SILSO SA SET CONTENT OF	light and a brown fravel to bove but and more of tone on sitt, 1	heavier	SP SP ML SP	ANALYTICAL SAMPLE COLLECTED	WELL DATA	100
			QU	JALITY A	SSURA		94th F		AN 04

APPENDIX C-2 SITE 04 DIRECT-PUSH GROUNDWATER SAMPLING LOGS

FIELD	DATA	REC	ORD - LO	OW FLOV	/ GRO	ROUNDWATER SAMPLING					JOB NUMBER 36/804 8122			
PROJECT	94	Th RI	ec La	wa, RI		FIELD SAMPLE NUMBER 47-01						EVENT NO.		
SITE ID	D Site 04						SITE TYPE				DATE 5.8.07			
:TIVITY		124		133	2	SAMPLE TIME 1320				FILE TYPE -				
WATER L	EVEL / P	UMP SE	TTINGS	parameters,	UREMEN	T POINT ELL RISER	-	PROTECTI	VE		CASING	3/WEII		
						ROTECTIVE	CASING	CASING ST	TICKUP	<u>-</u> г	CASING / WELL DIFFERENCE FT WELL			
FINAL DE TO WA		2	.4		DEPTH					DIAME	TER 1 IN NTERGRITY:			
SCREEN L	ENGTH		5	PRES FT TO P	SURE JMP	. –	PSI	PID WELL MOUTH	0.	D _{PPM}	INTEGE (CAS	CAP		
TOTAL \ PUR((purge	GED [GAL SETT me duration (m	ING	.00026 gal/n	nilliliter)	DISCHARG SETTING	SE		COL	*** Date of the second of the		
PURGE D	ATA DEPT	9.000 (800)	PURGE RATE (ml/m)	TEMP.	CONE	PECIFIC DUCTANCE ns/cm)	pH (units)	90 DO	TURBIDITY (ntu)	REDOX	PUMP INTAKE DEPTH (ft)	COMMENTS		
1255	0.000	egia	Purge		300			17.0	1.1127					
1 306			300	11.11	0.	300	6 06	3.5	71200	- 44.4		flow-through		
1320	(-114	t San	ple	RI	22- 0	IPS DI	91	and f	RI22-	- GPD	0101 tell		
	-				-				<u> </u>					
					-			-						
	+													
	1					****								
					_		1							
1														
В	OF PUMP LADDER ERISTAL	2		X	OF TUBI	ENSITY POLYETHYLENE STAINLESS STEEL					TYPE OF BLADDER MATERIAL TEFLON OTHER			
ANALYTI												2 (1 2 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A) (1 A		
ANAL	YSIS				IUMBER			SERVATION METHOD	VOLUM REQUIR			SAMPLE BOTTLE ID LETTERS		
Vo	G			122	60	HCI 3x food				RT22-4950101				
To4	al P	Ъ		عرص عا	010	St. 1775 (1777) (1777) (1777)					/	ι,		
Dissolved Pb 601				010	HN03 500 ml				ind J	,,				
		9.												
PURGE OF CONTAINS NOTES:	/ATER	ATIONS) NO _	No 00	br or	, shee	<u>~</u>							
SIGNATU	RE:	the,	1.0	e-			LC				NCE P	DATA RECORD ROJECT PLAN 94th RRC 2004		
CHECKE	D BY:											MACTEC Inc		

FIELD DATA RECORD	LOW FLOW GR	OUNDWATER S	SAMPLING	JOE	B NUMBER 36/8048/22						
PROJECT 94 TARK	Lincoln, RI	FIELD SAMPLE NUMB	ER 47- 01		EVENT NO.						
SITE ID Site 04		SITE TY	PE	H # 0	DATE 5.17.07						
STIVITY START 1005	END 1035	SAMPLE TIME	1030	F	ILE TYPE 1 -						
WATER LEVEL / PUMP SETTINGS	TOPOF	WELL RISER	PROTECTIVE CASING STICKUP		CASING/WELL DIFFERENCE FT						
TO WATER .	FT HISTORICAL	PROTECTIVE CASING	(FROM GROUND)	FT WE							
FINAL DEPTH TO WATER N/A FT (TOR) WELL DEPTH (TOR) WELL DEPTH (TOR) WELL INTERGRITY:											
SCREEN LENGTH 2 PRESSURE PID WELL O. / PPM CAP CASING CASING											
TOTAL VOL. PURGED (purge volume (milliliters per minute	GAL SETTING) x time duration (minutes) x	0.00026 gal/milliliter)	DISCHARGE SETTING	LC	OCKED						
PURGE DATA		PECIFIC		PUMF	P 1						
TIME DEPTH TO PURGI		DUCTANCE pH (ms/cm) (units)	MDO TURBIDITY (ntu)	REDOX INTAK (+/- mv) DEPTH							
		oo me / min									
1022 Fill 451	cup for	parameters 1229 5.93	49.2 132	7149	451 cup						
		- 4PS 0114	132	-13.0 15	457 000						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THE PARTY	4/ ///			8 *						
			,		, ,						
			**								
1 2 1	24 15				*						
1	_		7								
EQUIPMENT DOCUMENTATION											
TYPE OF PUMP BLADDER	TYPE OF TUB	ING VSITY POLYETHYLENE	TYPE OF PUMP MATE STAINLESS STEE		E OF BLADDER MATERIAL TEFLON						
PERISTALTIC OTHER _	OTHER_		OTHER		OTHER						
ANALYTICAL PARAMETERS	WETTON.	ppre	ERVATION VOLUME	SAMPLE							
ANALYSIS	METHOD NUMBER		THOO REQUIRED		SAMPLE BOTTLE ID LETTERS						
VOL	826	H	C1 3×401	we.	RI22 - GPS 0114						
) 40°	= , =								
u 9	1 6:			= 0 .							
	Gr 2	74 28	, e ¹	ж.,							
* *	8.	<u>.</u>		8 N N N N	* *						
					2 3						
	· · · · · · · · · · · · · · · · · · ·	ž.	# E	U 36 15							
PURGE OBSERVATIONS	(0.2 pou)	no odor or	sheen	£8	8 9						
PURGE WATER CONTAINERIZED VES NO				a 5	₩ #4						
NOTES:			20 m2 20 m2		ń s						
1.		LOV	V FLOW GROU	NDWATER I	DATA RECORD						
SIGNATURE: They	effer				ROJECT PLAN						
14 to 15 to		*			94th RRC 2004						
CHECKED BY:			1- \(\)	· · · · · · · · · · · · · · · · · · ·	— MACTEC, Inc.						

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING JOB NUMBER 3618048122											8048122				
PROJECT	PROJECT 94th RRC Liucoln, RI FIELD S							E NUMBER 67-02				EVENT NO.			
SITE ID	ste o	4				SITE TY	PE .	-		DATE 5-8-07					
TIVITY STAR	14 14 I	DO EN	D 14	50	SAMPLE	IME	141	5		FILE	TYPE .	-			
WATER LEVEL INITIAL DEPTH TO WATER FINAL DEPTH TO WATER SCREEN LENGTH TOTAL VOL. PURGED	FT FT me durati	MEASURI TOP TOP TOP WELL DE (TOR) Gro TO PUMP REFILL SETTING on (minute	EMENT POINT OF WELL RISER OF PROTECTIVE OF P	PROTECTIVE CASING CASING STICKUP (FROM GROUND) FT PID AMBIENT AIR PPM PID WELL PSI MOUTH PPM DISCHARGE SETTING pH OD TURBIDITY REDOX (marc) (ntu) (+/- mv)			CASING / WELL DIFFERENCE WELL DIAMETER WELL INTERGRITY: INTEGRITY: YES NO N/A CAP CASING LOCKED COLLAR PUMP INTAKE DEPTH (H) COMMENTS T 1 1 YS1 Cup								
		**************************************								ā					
	IMP ER ALTIC ()	OTHER		-	TUBING H DENSITY POLY ER		ST	OF PUMP MATE AINLESS STEE HER	L	TE	OF BLADDER M FLON 'HER	MATERIAL			
ANALYTICAL P	PARAMETE	RS		METH			SERVATION ETHOD	VOLUME REQUIRED	SAMP COLLEC		AMPLE BOTT	EIDI ETTERS			
YOU				826	717/200	-	tci	3×40m		SAMPLE BOTTLE IDLETTERS RT 22 - 4P5 0201					
Total	Line II.			6010	þ	HNO3 Goome					t/				
dissolved Pb (fif.) 6010				•	HN03 500 WL V					v.					
									-						
PURGE WATER	CONTAINERIZED (ES) NO														
SIGNATURE:		1.0	ple		-	LO		W GROU LITY AS		ICE PF		PLAN			
CHECKED BY: _									500 550 500		— MAC	ΓEC, Inc. —			

LDء	DATA RE	CORD - L	OW FLOW	GROUNDW	ATER S	SAMPLI	NG ·		JOB N	UMBER 3618048122		
PROJECT	9474 1	2PC Line	oln, PI	FIELD SAI	MPLE NUMB	BER .	48-02]	EVENT NO.		
SITE ID	5.70	04		•	SITE TY	PE		* N	DATE 5.17.07			
TIVITY	START	140 EN	10 1210	SAMPLE T	IME	12	00	FILE TYPE				
WATER L	EVEL / PUMP	SETTINGS		JREMENT POINT				*	· CACINI	2 (19/51)		
INITIAL DE TO WA		A		OP OF WELL RISER		PROTECTI CASING ST (FROM GR	TICKUP	— Б	DIFFER	CASING / WELL DIFFERENCE FT		
FINAL DE TO WA		1A	WELL (TOR)		, FT	PID AMBIENT	AIR O.	O PPM	DIAME	TER IN		
SCREEN L	ENGTH	2	PRESS FT TO PU		PSI	PID WELL MOUTH	2.	7 PPM	INTEGR	RITY: YES NO NA		
TOTAL \ PURI	GED L		AEFILL SETTING The duration (min	2500	nillillter)	DISCHARG SETTING	SE		rock	KEO		
PURGE D	ATA DEPTH TO	PURGE	I ТЕМР.	SPECIFIC CONDUCTANCE	ј рн	10/ DO.	TURBIDITY	I REDOX	PUMP			
TIME	WATER (h)	RATE (ml/m)	(+/- deg. c)	(ms/cm) *	(units)	(mg/L)	(ntu)	(+/- mv)	DEPTH (ft)	COMMENTS		
1155	Well	purque	dry	after	205		00 26 2	Im				
1200	Colle	ct Sam		I 22 - GP			300	35.8	16	YSI TUP .		
1205		#	10.72	0.436	6.08	44.4	300	32.0	. 6	151 COP		
									•			
	-						•			**		
74				1								
	111	•										
	7- 1											
								70		100		
						, N						
							50%					
EQUIPMEN	NT DOCUMEN	TATION .					. 97	· ·	El-I	7		
	E PUMP	79	-	FTUBING .			F PUMP MATER		-	E BLADDER MATERIAL		
	ADDER	OTHER		H DENSITY POLYE	IHYLENE		AINLESS STEEL HER		=	IER		
	AL PARAMET			,					.			
ANALY	· · · · · · · · · · · · · · · · · · ·			HOD. IBER		RVATION THOD	VOLUME REQUIRED	SAMPL COLLECT	E SA	MPLE BOTTLE ID LETTERS		
Voc		*		60	OF STREET	<1°	3×400	n v		CI22 - 4PS021		
	300 ⁽²⁰⁾		8 .		3.5%		*					
	20		,	**					1			
25		₆₀ ≥	6.4	**					ē 2			
				*								
			700	E 10		WC .			* **			
:*		40	1		11 19		•		* * * * * * * * * * * * * * * * * * *			
**		*	•	×		8	* *	* •	2 0			
UDGE OD	SERVATIONS		no shee	n or vd	~	1		-				
URGE WAT	TER)· NO	No Shee			(0,4	bbm)	¥	¥0			
OTES:					(3	13	e e	9 Ta 2	9	Age Age		
IGNATURE:	A	on fly	e-		LOW					TA RECORD		
*	Section 2000 Annual Control of Co	249		7.67	•	GUAL	.111 ASS	UKAN(DJECT PLAN th RRC 2004		
HECKED B	Y:			31 1	y.	Æ.		34	. 5-4	- MACTEC, Inc.		
								13		- MACTEC, IIIC. ——		

LD				W FLOW	GROUNDW	ATER S	AMPLI	NG .		JOB NL	MBER 3618048122	
PROJECT	9	4 12	pre,	Linco n,	PT FIELD SAM	IPLE NUMBE	ER 4	P-03		EVENT NO.		
SITE ID		Sit	e 04			SITE TY		<u></u>			DATE 5.8.07	
YTIVIT;	START	152		(030	SAMPLE TI		08:	20	FILE	TYPE 414 5.9.0=		
WATER L INITIAL DE TO WA FINAL DE TO WA SCREEN L	PTH TER	3.	Minds . I	5/9/MEASU	DEPTH 6.3	CASING	(FROM GROUND) FT				S/WELL FT FER IN NTERGRITY: RITY: YES NO N/A	
TOTAL \ PURI	VOL. GED volume (mil	I wa		FT TO PUN REFILL SETTIN	MP	PSI	MOUTH DISCHARG SETTING	E	PPM		CAP \frac{\fin}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac}{\frac{\frac}{\frac{\frac{\frac{\fir}}{\frac{\fir}{\fir}}}}}}{\frac{\frac{\frac{\fir}{\fir}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	
PURGE D	DEPTH WATER	(ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	% DO	TURBIDITY (ntu)	REDOX (+/- mv)	PUMP INTAKE DEPTH (It)	COMMENTS	
1532		egar		-	dry	affer		5				
1025		olle	et S	mule	RI 22	GP:			n 5	.9.00		
1023				16.68	1.195	6.57	70.4	-91.6	112.0	5	14 451 cap	
			544									
							-					
1												
BL	<u>OF PUMP</u> LADDER ERISTALTIO	: <u> </u>	OTHER	лн Х то	DE TUBING SH DENSITY POLYE THER THOD		ST.	F PUMP MATER AINLESS STEEL HER	7	TEI OTI	F BLADDER MATERIAL FLON HER	
ANALY	YSIS				MBER		ETHOD	REQUIRED			AMPLE BOTTLE ID LETTERS	
V . C	v			02	260	H	4	3 K 40	WL	V	RI22 - GP50301	
Tota	1196				10	1.50	Noz	· te				
Desso	Dessolved Pb (4f.) 6010						HNO3 IX SOUNL V					
			. a	ŝŝ	. 4			1967 -				
PURGE O PURGE WA CONTAINE NOTES:	ATER	TIONS	NO	no she	en or od	•		<u>~</u>				
SIGNATUR CHECKED	N.	Puly	f. igh			LO				ICE PR	ATA RECORD OJECT PLAN 4th RRC 2004	
											— MACTEC, Inc. —	

3

FIELD D	ATA REC	ORD - LO	OW FLOW	GROUNDW.	ATER SA	MPLIN	IG		JOB NUI	MBER 3	6180481	22
PROJECT	94	Th RRC	- Lincolo	FIELD SAM	IPLE NUMBER		1P-04			EVENT		
SITE ID	Site	04			SITE TYPE				ا بر	DATE 5	- 8.07	- and
STIVITY ST	TART 15	10 EN	0 0945	SAMPLE TI	IME	080	0	- /	FILE T	YPE	2.9.0.	7
WATER LEV	and the second of the second o	ETTINGS	5/9/0 MEASU	P OF WELL RISER		PROTECTIV		, sel	CASING			
TO WATER	R 5	.7	FT HUSTOF			CASING ST FROM GRO		- FT	DIFFERE WELL		-	可
FINAL DEPTI	R	74	FT (TOR)	7.2	FT A	PID AMBIENT A	IR D.	РРМ		TERGRITY		IN
SCREEN LEN		5	FT TO PUN	The state of the s	70	NOUTH	0.0	PPM	INTEGR C CASII	AP	NO 1	N/A
TOTAL VOI PURGE (purge vol	D	Per minute) x ti	REFILL SETTIN me duration (minu	G		DISCHARGI SETTING	E	A CONTRACTOR	COLL		= :	=
PURGE DAT			·	SPECIFIC		· .		•	PUMP			
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP, (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DO DO	TUABIDITY (ntu)	REDOX (+/- mv)	DEPTH (H)	co	MMENTS	
1515	Begin		ing -	dry	after	2	min	on	5.8	.07		
0800	Colle	ct Sa	uple.	'RI 22.	GPS 0		•••	5.9.	07.			
0930			16.81	0.279	5.94	70.7	83.0	83 6	7	14 YS	مام ا	
								-				
TYPE OF	T DOCUMENT PUMP DDER		K HI	OF TUBING GH DENSITY POLYI HER	ETHYLENE	st	OF PUMP MATE! AINLESS STEEL		TEF	F BLADDEF FLON HER	R MATERIAL	
	L PARAMET	ERS		THOD		RVATION	VOLUME	SAMP				
VOC	<u>IS</u>		0.000	MBER 26 0	Principle	THOD	REQUIRED	tit dansk kalend			TLE ID LET	+ +
Total	PL					tei	3840	10.L			GPS	0401
1.00		1.		10		No3	(X 50	DO SAL				
Disse	sived Pl	b (+.+	.) 60	10	H	W03	1 × 5	500 ml		,	1	
	*NELPOPPICE								× 41-477.1			
PURGE OBS PURGE WAT CONTAINER! NOTES:	Market Control of the	\	no ode	or or sl	neem							
oiGNATURE:	-pul.	1. 4	gle-	-	LOV		W GROU LITY AS		NCE PR	OJEC		1
CHECKED B	Y:										CTEC Inc	

FIELD	DATA RE	COF	RD - LC	W FL	OW (GRO	JNDW	ATER S	AMPLIN	NG		JOB NU	MBER 3618048122
PROJECT	94	Th	RRC	-, L	ncoln	FIF	IELD SAM	IPLE NUMBE	:R	GP-05			EVENT NO.
SITE ID	9.	te	04					SITE TYP	e				DATE 5.8- 07
YTIVIT;	START 10	15	ENI	10	50	s	AMPLE T	IME	10	40		FILE	TYPE . — .
INITIAL DEF TO WAT FINAL DEF TO WAT SCREEN LE	PTH TER ENGTH	7 7.	4 k	FT FT	HISTORI WELL DI (TOR) PRESSU TO PUM	OF WE PROPERTY OF	LL RISER		PROTECTION CASING ST (FROM GROUND ST (FROM GRO	OUND)	FFIVI	WELL II INTEGR	NTERGRITY: RITY: YES NO N/A CAP ING
PURC (purge v	GED [D. 9			SETTING on (minut		0026 gal/n	nilliliter)	SETTING			COLI	_AR .,
PURGE DA	The state of the s	RA*	PURGE TE (ml/m)	TEN (+/- de	иР. eg. c)	SPE	CIFIC ICTANCE Vcm)	pH (units)	of 00 (100gAz)	TURBIDITY (ntu)	REDOX (+/- mv)	PUMP INTAKE DEPTH (ft)	COMMENTS through rods
1035	-		purge 300	16-1		0. 2		5.66	24.8	N/A	11.6	7	no temp. puc
1040	Coll		San		-	22 -		50501				- T	well placed
							=					3	
		-					State of the	6					
TYPE (ENT DOCUMENT OF PUMP LADDER ERISTALTIC CAL PARAME] OTH	HER		OT!	HER			ST	DF PUMP MATE TAINLESS STEE THER	SAMF		DF BLADDER MATERIAL FLON HER
Yo	100-01				1000	260		illoca	HC 1	3x 4v	,	יובט 2	RT 22- GPS050
tot	tal Pb				6	olo		ļ	f NU3	1×50	ic m.L		11 22 41 303
dis	solved p	6	(4.4.7)		6	16		. 0	HNUZ	1×	too me		4,
		- Carina		· · · · · · · · · · · · · · · · · · ·					•	<u></u>	· ·		
PURGE OF PURGE WA CONTAINE NOTES:		3)	NO	И	one	(n	0 5 h	en or	odo.				
	RE PL	21	1.0	W.	-			LO	mener en eneme			NCE PE	ATA RECORD ROJECT PLAN 94th RRC 2004
CHECKED) BY:												MACTEC Inc

FIELD I	DATA RECO	ORD - LOV	N FLOW C	GROUNDWA	ATER S	SAMPLIN	IG		JOB NI	JMBER 36	18048122
PROJECT [94 14	RRC, L	ricoln, KJ	FIELD SAMI	PLE NUMB	ER - C	ip-06]	EVENT N	10.
SITE ID	Site	04			SITE TY	PE -				DATE 5	8.07
YTIVIT;	START 114	END	1230	SAMPLE TI	WE _	1220	,		FILE	TYPE]
WATER LE	VEL / PUMP SE	TTINGS		EMENT POINT OF WELL RISER		PROTECTIV	F		CASINI	3/WELL [
INITIAL DEP TO WAT		6 F	TOP	OF PROTECTIVE	CASING	CASING STI (FROM GRC	CKUP	– _{ЕТ}	DIFFER		<u>-</u> FI
FINAL DEP TO WAT	ACC-200	- F	WELL DE	7.z	• FT	PID AMBIENT AI	R () PPM		TER NTERGRITY:	IN.
SCREEN LE	NGTH	5 _,	PRESSUR TO PUMP	100	PSI	PID WELL MOUTH		О РРМ	- Pro-	RITY: YES CAP	NO N/A
TOTAL VO PURG (purge v	ED We	er minute) x time		es) x 0.00026 gal/m	illiliter)	DISCHARGE SETTING	<u> </u>		COL	(A) (S) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	= =
PURGE DA	DEPTH TO	PURGE RATE (ml/m)	TEMP.	SPECIFIC CONDUCTANCE (rns/cm)	pH (units)	00 DO (eng/L)	TURBIDITY (ntu)	REDOX (+/- mv)	PUMP INTAKE DEPTH (ft)	СОМ	MENTS
1143	Begin	Purgin			9134	aft			99	ing	
1153			16-72	0.213	5.02	55.9	833	57.0	7	731	Cup
1220	101	ect Sav	uple 1	RI22- 4	P506	01					
				11112 - 70							
-											
FOLIDMEN	NT DOCUMENTA	ATION				1					
550000000000000000000000000000000000000	F PUMP	411014		TUBING			F PUMP MATE	RIAL	TYPE (OF BLADDER	MATERIAL .
	ADDER RISTALTIC	OTHER		H DENSITY POLYE			AINLESS STEE			FLON	
	AL PARAMETE			IER			HER			THER	
ANALY			MET NUM	HOD BER		SERVATION METHOD	VOLUME REQUIRED	SAME COLLE		SAMPLE BOT	TLE ID LETTERS
Voc	٥		820	60	9	Hc1	3×40	u L	✓ 1	R <u>t</u> 22-	GP50701
tota	1 14		601	0	Ú	tNos	Lx 500	~ L	J	v	Θ
Dies.	lved 96		601	.0		HNO3	LK 50	omL	/	• •	
PURGE OF PURGE WAS CONTAINE NOTES:		(2 -15)	no oder	or gh	een	-				-	
PIGNATUR	E Nas.	1.1	ye.	-	LC		W GROU		NCE P	ROJEC ⁻	T PLAN
1	BY:								,	94th RR	C 2004

W2004037c.xis

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	SAMPLII	NG		JOB NI	JMBER 3618048122
PROJECT	941	RRC	Lincoln	TT FIELD SAN	IPLE NUMB	ER 4	9P-07]	EVENT NO.
SITE ID	S:te	04	9		SITE TY	PE	_]	DATE 5.9.07
YTIVIT;	START 14	40 EN	0 1540	SAMPLE T	IME	145	5		FILE	TYPE ' -
WATER L INITIAL DE TO WA		ETTINGS	ТО	REMENT POINT P OF WELL RISER P OF PROTECTIVE	: CASING	PROTECTI CASING ST (FROM GR	TICKUP .	FI	DIFFER	S/WELL FT
FINAL DE TO WA	25433035	M	FT (TOR)	8. 7	FT	PID AMBIENT A	AIR C	PPM	DIAME	TER IN
SCREEN L	ENGTH	5	PRESSI TO PUN	California Company Com	PSI	PID WELL MOUTH	-	РРМ	INTEGR	CAP
TOTAL \ PUR((purge	GED		REFILL GAL SETTIN me duration (minu	G	nilliliter)	DISCHARG SETTING	ie		LOCK	KED
PURGE D. TIME	ATA DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	7. DO (19197L)	TURBIDITY (ntu)	REDOX (+/- mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
1448	Well	is d	14	700				7		
1455	Collec		rple]	RI22-	GPS	0701				
15 38	dry		22.75	0.057	6-10	89.3	- 552	93.6	8	الله الالا بدا
	<u> </u>									
	-m-iv									957
V					ļ					,
										3.6
										+
TYPE (NT DOCUMENT OF PUMP ADDER ERISTALTIC		X HIC	F TUBING SH DENSITY POLY! HER	ETHYLENE	st	OF PUMP MATER		TE	DE BLADDER MATERIAL FLON HER
ANALYTIC	CAL PARAMET	ERS	ME	THOD	PRES	ERVATION	VOLUME	SAMP	LE	
ANALY			720.0	MBER	10000	ETHOD	REQUIRED	1.10.10.10.10.10.10.10.10.10.10.10.10.10	TED S	AMPLE BOTTLE ID LETTERS
Vo	C		82	40	F	tci	3×40	ent	V	RI22- GPS070
Tot	al Pb		6	010	#	N03	1×5	DOLL	V	te
Drss	rolved Pb	6 2 €	60	10	H	N03) ×	500 m	. 1	.,
			* '						i v	
PURGE O PURGE WA CONTAINE NOTES:) NO _	no sheen	or odor						
oiGNATUR	E:	lat u	el.		LO				NCE PF	ATA RECORD ROJECT PLAN 4th RRC 2004
CHECKED	BY:									— MACTEC, Inc.

APPENDIX C-3 SOIL BORING LOGS - BRIGGS ASSOCIATES, 1986

GROUNDWATER DESERVATIONS

TOWN	Làngoln R. [LOGATION HOLE NO. B-1, O.H. LINE & STA.
-	Albion St., 94th ARCOM	NGLE NO. B-1, 0.H.
PROJECT NO	70683	DIFFEET

<u>^1 —</u>	ft. after to the street to the	Hours		Type Size I.Q Hamme Hamme	r Wi	Auger 2-1/2 ⁿ	1-3/			26-86 -26-86 - Re11		
Cating Blows per	Sample Depths	Sample Type Depths of Faces		Blows per 6" on Sempler To		Streta Change Depth	Fleid (dentification of Soil. Percents (incl. color, four of week water, marrie in rock, etc.)			SAMPLI		
faor	From · Ta	Sample	0.6	6-12	12 - 18	1B - 24	Élev.			No.	Pen	Rec.
	0.5 - 2.5'	SS	2	4	8	1,7	1.0.	Moist, loose, TO	PSOIL	1	24"	16"
			<u> </u>							<u> </u>		
			 	<u> </u>	-			1		 	<u> </u>	<u> </u>
	4.5 - 6.0'	SS	9	19	30			 Moist to wet, de	ore Fine/modium	2	101	15*
	4.7 - 6.0	1 33	 	 ** -	30				, little silt, trace		10	13"
	 - · · · · · - · · - · · · - ·		<u> </u>	 		 		_	ravel, combles and			
			<u> </u>	1	<u> </u>			small boulders	perce, consider min			
		<u> </u>		İ		<u> </u>		3				
	9.5 - 11.0	SS	15	17	21					3	18"	18"
	<u> </u>	—₩—	—	<u> </u>	1	1		•		 		
			<u> </u>	+	<u> </u>	 -	!	i		—		
			 _	╂	 	 -				\vdash		
├	14.5 - 16.0		21	23	30	 		1		_	18°	18"
	14.7 - 10.0	- 	 ** -	. .	1				•	-	10	10
				 	 ~~~			İ			 	
								i				
]]				
	19.5 - 20.01	55	15	100/0	H		20.01	<u></u>		5	6"	0*
<u> </u>	<u> </u>		{ ——	╀	 	ļ——		Sottem of Boring	at 20.0' Refusal		<u> </u>	
			 	-	 	\vdash		•			— ↓	
-	-	-	+		 -	┞╼╼┥				$\vdash \vdash$		
 	 		 	1	 	 		NOTE: Observati		\vdash	-	
	·		 	\vdash		 		at 19.5', 15' sc	reen, seal at 2'-3'	 -{		
					_	 				$\vdash \vdash \vdash$	 	
				1								
1								!				

CASING

2 Very Soft	5 FOR C	CLAY Stiff	BLOW	COUNTS FOR GRA	ANULAR MATERIAL
5-8 Medium Proportion used: (<u> </u>	შ.e.g.d	11-30	Medium	

TOWNLin	coln, R. I.	#HEET1OF1
PROJECT NAME	Albion St., 94th ARCOM] HOLE NO 8-2-0.И.
PROJECT NO	70683	LINE & STA.

GROUNDWATER OBSERVATIONS	T	CASING	SAMPLER	CORE BAR.	SURFACE ELEV.
At 4.6' ft. 18 Hours	Type Size I.D.	Auger 3"	5\$ 1-3/8*		DATE START: 8-27-86 DATE FINISH 8-27-86
At ft. sfter Hours	Hemmer Wt.		140 lbs. 30"	8)T 	BORING FOREMAN <u>C. Reil</u> INSPECTOR

LOCATION OF BORING: Blows per 6" Caring Streta Type Field Identification of Soil. Sample 8!0**w**3 on Sampler Change SAMPLE Deothe Remarks (Incl. color, loss of week water, CH From - To manne in rock, its.) Sample inne 6-12 12-18 18-24 No. Pen Rec. Elev. 0.6 0.5 - 2.01 4 1.0 Moist, loose TCPSOIL "61 14" 2.0' Dry,loose,fine/medium brown sand, little silt, trace fine/coarse gravel, (Subsoil) 5.0 - 6.51 26 31 33 Moist to wet, dense, fine/coarse 18" 15" light brown sand, little silt, trace of fine/coarse gravel, cobbles and small boulders 11.0 18" | 16" 10.0 - 11.5 55 18 52 23 Wet, dense, fine light brown silty sand, trace of coarse gravel and cobbles 15.0 - 16.51 SS 13 18 25 18" 17" 18.01 Wet, very dense, fine/coarse light brown sand, little silt, trace fine/ 2014" 20.0 - 20*4" 110/4" SS coarse gravel and cobbles Bottom of Boring at 20'4" Refusal NOTE: Observation Well tip set at 19.5', 15' screen, seal at 2'-3'

BLOW COUN	ITS FOR	CLAY	BLOW	COUNTS FOR G	RANULAR MATERIAL	
4 2 Very Soft.					31-50 Dense	
2-4 Soft	16-30	Very Stiff	5-10	Loose	> 50 Very Densa	
5-8 Medium	> 30	Hard _	11-30	Medium		_
Proportion used:	trace •	0 - 104 little =	10 - 202	some = 20 - 35	2 and • 35 - 50%	

	SHEETOF!
TOWN Lincoln, R. I.	LOCATION
PROJECT NAME Albion St., 94th ARCOM	HOLE NO. B-3-0.W.
PAGJECT NO. 70583	LINE & BTA.
PAGJECT NO.	OFFRET

GROUNOWATER OBSERVATIONS		CASING	SAMPLER	CORE BAR.	SURFACE ELEV.
At 3° ft. after 18 Hours	Type Size 1.D.	Auger & HW 3" 4" 300 lbs.	55 1-3/8" 140 lbs.		DATE START: 8-27-86 DATE FINISH 8-28-86 BORING FORSMAN C. Reil
At ft. ofter Hours	Hammer Wt. Hammer Fai		30"	- IIT	INSPECTOR

At	ft. efter	Hours]	Hamme	r Feil	24"		O" INSPECTOR			
LOCA	TION OF BORING:		•								
Casing Blows per	Sample Depths	Type	iFram	on Sampler Cha			Strate Change Depth	Field Identification of Soil. Remarks (Incl. color, loss of west water,		SAMP	LE
foot	From - To	Sample	0 - 6	6 - 12	12 18		Elev	seems in rock, etc.)	No.	Pen	Rec,
	0.5 - 2.0	55	2	5	2		1.0	Moist, loose TOPSOIL	1	18"	12"
<u> </u>		-	 _	ļ. <u>. </u>			2.01	Wet, loose (ine/medium brown silty	<u></u>		
<u></u>	<u> </u>	1						sand,trace fine/coarse gravel and cobbles			 -
<u> </u>	5.0 - 6.5	[] \$5	16	19	19			Moist, to wet, dense, light brown		18"	7511
	2.0.1		- 44		1.7			to grey, fine/medium sand, some		16	
	-	.						silt, little fine/coarse gravel and			
	İ	+-			<u> </u>			cobbles, trace of small boulders			
	10.0 - 11.5	55	23	18	21				3	18"	16"
<u> </u>		₩—	├─-	ļ							
		#	+	 	-				\vdash		 -
 -	15.0 - 16.5	55	35	41_	40				4	18"	16"
 		#	 						H		—
			L				19.5'			<u></u>	
	19.5'	55	100/0	PT		-	19.5	Bottom of Boring at 19.5' Refusal	[5]	ייט	$\overline{}$
<u> </u>			<u> </u>		··-				}		
		ļ	<u> </u>								
<u> </u>		₩	 -				2	NOTE: Observation Well tip set at		_	
<u> </u>		<u> </u>						18.5', screen 15', seal at 2'-3'	┝─┤	-	\dashv
		ļ <u> </u>			-						=
 	-								$\vdash \vdash \vdash$		\dashv
		it -··-			-		[├ ╼╾┼	$\overline{}$	\dashv
<u> </u>		1	\vdash				i				
		 					[,	\longrightarrow		
	-, -, -										
		 					.				
		<u> </u>				\dashv	-	}	┯┯╂		
			<u> </u>					İ			
-	· · · · · · · · · · · · · · · · · · ·					 [j	·	\dashv	_	

BLOW COUR 2 Very Soft	ITS FOR CLAY	BLOW COUNTS FOR GR	ANULAR MATERIAL
2-4 Soft	16-30 Very Stiff	5-10 Loose 11-30 Medium	> SO Very Dense
Proportion used:	trace = 0 - 10% little	e = 10 - 20% scare = 20 - 35%	and = 35 - 50%

-0.181	Lincoln R. I.	SHEET OF 1 LOCATION HOLE NO. B-4-0.W. LINE & STA.
	Albien St., 94th ARCOM	HOLE NO. B. A. O. W.
	AIDION SC., 94CH MACON	LINE & STA
PROJECT NO	70683	OFFSET

GROUNDWATER DESERVATIONS	CASING	SAMPLER CORE BAR.	SURFACE ELEV.
At 2.6' ft. stree 90 Hours	Type Auger HM Size I,D. 2-1/2" 4"	1-3/8" 140 lbs. arr	DATE START: 8-28-86 DATE FINISH 8-29-86
At ft. efter Hours	Hammer Wt. 300 1bs. Hammer Fall 24"	30" BIT	BORING FOREMAN C. Reil INSPECTOR

Blows	Sample Depute	Type	Type		Blows out 6 11 Streta on Sempler Change		Change	Field identification of Soll. Remarks (Incl. color, loss of west water,		SAMP	LE
per foot	From - To	Semple	Fram 0 · 6	6 - 12	To 12 - 18	18 - 24	Depth Elev.	marks in rock, etc.)	No.	Pen	₽¥¢
0.0 - 2.0' S5 1		4 3 7		1.5'	Moist,loose,TOPSOIL, and silt,mixed trace of sand and gravel	Ī	24"	16			
	4.5 - 6.01	55	13_	20	26		7.0	Moist to wet, dense, fine/coarse brown sand, little fine/coarse gravel cobbles and small boulders	2	18"	14
	10.0 - 11.5	SS	9	16	16			Wet, dense, fine/medium brown silty sand, trace of fine gravel and coarse sand	3	IB"	14'
	15.0 - 16.51	SS	67	92	12D		14.5'	Wet, very dense, fine/coarse brown sand, little silt, trace fine/coarse	4	1B"	12
	18.0'	SS	100/0	"			16.01	gravel and cobble Bottom of Boring at 18' Refusal	5	0"	!
							<i>5</i> ·	MOTE: Observation Well tip set at 15', 10' screen, seal at 2'-3'			

	SAME BLOWNCOUNTS FOR		BLOY	COUNTS FOR GRANULAR MATERIAL
: '	6.2 Very Soft 9-15 2-4 Soft 16-30	Stiff	< 4	Very Loose 31-10 Dense
. "	2-4 Soft 16-30	Very Stiff	5-10	Loose > 10 Very Dense
	5-8 Nedium > 30	Hard 1		Nedice
_	Proportion used: trace =	0 - 10% little - 10 -	20%	some = 20 - 35% and = 35 - 50%

TOWNLin	coln R.I.	SHEET 1 OF 1
PROJECT NAME	Albion St., 94th ARCOM	HOLE NO. 8-5-0.W-
PAQJECT NO	70483	
		OFF8ET

GROUNDWATER OSSERVATIONS		CASING	SAMPLER	CORE BAR.	30K/A06 FEG
AL 4" II. after 18 Hours	Type Size (,D,	Auger HW 2 <u>-1/2" 4"</u>	<u>SS</u>		DATE START: 8-29-86 DE FINISH 9-2-86
At ft, after Hours	Hemmer Wt, Hemmer Fall	300 lbs.	140 lbs		BORING FOREMAN C. Rell

Casing Blows	Sample	Sample Type Depths of			Blows per 6 ft on Sempler			Field identification of Soil. Remarks (incl. color, loss of week water,	SAMPLE		
per Ipot	From - To	Semple	From	6.17	12 · 18		Depth Elev.	searne in rock, etc.	No.	Pen	A Mc
	0.0 - 2.0'	55	3	7	11	9	CHV.	Moist, medium, fine/coarse black	1	24"	13"
	0.0 - 2.0	1 33		1	11	, ,		brown and green sand, trace of fine/	一	 • • • •	-,-
	 	┪ —	 		 		3.01	coarse gravel and silt, Oil and	┈	├─	
		1 -	\vdash			_	\ <u></u>	Foreign ador	\vdash		\Box
			 				· '	10,019,7 0001			
	4.5 - 6.0'	SS	21	25	29			Moist to wet, dense fine/coarse	2	18"	15"
		<u> </u>	<u> </u>		<u> </u>			brown sand, trace to little fine/	<u> </u>	.	
			<u> </u>		 			coarse gravel, trace of coobles	<u> </u>		
		1	 			-			 	\vdash	
	9.5 - 11.0'	\$5	13	19	25	 			3	18"	יים
	7.7 - 11.0	35	12	1.7		\vdash				ΕÏ	Ť
		 							<u> </u>	-	
								·			
	14.5 - 16.0'	SS	15	29	34		15.01	<u></u>	4	18"	15"
	- <u>-</u> -				ļ			Wet, dense, fine silty brown sand,	 -		
	<u></u>	-}	 	-	 			trace of fine gravel	 _	 	
	19.31	SS	100/0		<u> </u>	<u> </u>	19.3"			0"	
	1717	1 33	10010				17.5	Bottom of Boring at 19.3' Refusal			
		- -	 					bottom of horizing at this merosal	\vdash		
					<u> </u>		-				
			1								
			<u> </u>					NOTE I: Redrove spoon to 12' for			
	 -	∄	 	<u> </u>		└		sample	\square		
		#							إ	 	
	<u> </u>	╫	 						┯╅		
		╫──	-		 	$\vdash \vdash \vdash$		NOTE II: Observation Well tip set		-	
		<u> </u>						at 18'9", 15' screen, seal at 2'-3'			
		ļ <u> </u>						ļ			
		₩	<u> </u>		<u> </u>	 	.		[
_		-	 		 -	<u> </u>	'		i		
	-	+	 				. [
		+	┞╼─┤	-		 				\rightarrow	
		1	 - 				•	· .*	 [
		1						· · · ·	- †	 †	
								ľ	T†		

BLOW COUNTS FOR (2 Very Soft 9-15 2-4 Soft 16-30 5-8 Median > 30	Stiff Very Stiff	5-10	Very Loose.	GRANULAR MATERIA 31-50 Defice :: > 50 Very Dec	- .
Proportion used: trace =	0 - 102 11++14			EV and = 35 = 50%	

TOWN	Lirx	oln R. I.		
PROJECT	NAME .	Albien St.	94th	ARCOM
PROJECT	NO	70683	3	

SHEET 1			_	<u> </u>
HOLE NO.				
LINE & STA.		_		
OFFRET				

GROUNDWATER OBSERVATIONS		CASING	SAMPLER	CORE BAR.	SURFACE ELEV.
At _4' ft. after 18 Hours	Type Size I.D.	2-1/2"			DATE START: 9-2-86 DATE FINISK 9-2-86
A1 ft. efter Hours	Hemmer Wt. Hemmer Fall		140 lbs. 30"	●IT	BORING FOREMAN C. Ref1

LOCA	LOCATION OF BORING:												
Casing Blows per	Sample Oepths From - To	Type of Sample	From	on Sa	o≠ 6° Impler Ta		Strete Change Dapth	Field Identification of Soli, Remarks (Incl. color, loss of week water, manny in rock, etc.)		SAMP	LE		
laot	710111111	34	0-6	6 - 12	12 18	18 - 24	Elev.	in roca, arc,	No.	Pan	Rec.		
	0.0 - 2.0'	SS.	_ 2	4	13	4		Moist, loose, fine/medium brown sand		24"	14"		
i		1		ļ <u>-</u>	ļ., <u> </u>	ļ. <u></u> .		little black silt, trace of silt,	<u> </u>		<u> </u>		
ļ		⊩ —	 -	!		···	3.0'	medium/coarse gravel and cobbles		ļ			
<u> </u>	4.5 - 6.01	SS	30	31	38		ļ	Moist to wet, dense fine/medium	2	18"	159		
<u> </u>	4.5 - 6.0	1 33		71	-20			brown sand, some silt, trace coarse		10	13"		
							7.01	sand, fine/medium gravel & cobbles					
		 -	ļ										
i	9.5 - 11.0	5\$	B -	16	24			Wet, dense to medium fine brown	3	16"	18"		
			<u> </u>					silty sand, trace of fine gravel					
<u> </u>		<u> </u>					'						
 		<u> </u>	<u> </u>			 _		i					
	14.5 - 16.0'	55	4	<u> </u>	15				4	18"	0"		
· · · · · · ·		 	1	<u>-</u> -				i		13	 		
<u> </u>										1	·—		
								[
		ļ <u>.</u>	1			$\overline{}$	19'9"						
 	19.5 - 19.75'	SS	100/3			-	13.3	Bottom of Boring at 19'9", Refusal	5	3"	0"		
		 			\vdash				\dashv		─		
) —	<u> </u>							ì					
								NOTE 1: Redrove spoon to 16.5'					
		ļ						for Sample					
		 -			- 1		İ			[i		
								}		- 	$\overline{}$		
								ì	 †	-			
								Ì					
								[
	<u></u> .	 											
	 -	 	-		 -	—	ļ	 	-				
							i			<u> </u>			
		ļ											
			.]					[[
			 					}	\dashv				
		1	 	···-				 			\dashv		
}													

< 2 Very Saft	9-15 Stiff			COUNTS FOR	GRANULAR MATERIAL 31-50 Denso
2-4 Soft	16-30 Very S			Loose	> 50 Very Danse
5 <u>-8 Nedium</u>	<u>) 30 Hard</u>		11-30	<u> Modium</u>	
Proportion used:	trace = 0 - 10%	little = 10	- 201	some = 20 - 3	5% and = 35 - 50%

1.54	anta O .	9'
TOWN	cain R. I.	l u
PROJECT NAME	Albion St., 94th ARCOM	H
·	70683	1 1
PROJECT NO	70003	۱ ـ

SHEET	1	OF _	1]
LOCATION				
HOLE NO.	8	- 2		
LINE & STA	·			
OFFEET .				

GROUNGWATER DESERVATIONS	1	CASING .	SAMPLER	CORE BAR.	SOMPAGE ECET.
At 41 ft. alter 3 Hours	Type Size I.O.	2-1/2"	<u>\$\$</u> _		DATE START: 9-2-86 DATE FINISH 9-3-86
as a transition of the same	Hammer Wt.		140 lbs.		BORING FOREMAN C. Reil
At ft. efter Hours	Hammer Fall		30"		INSPECTOR

Casing Blows per	Sample Depths	Type		Blows on Sa	mpler		Strete Change Depth	Field Identification of Sqll, Remarks (Incl. color, lost of wash water,		SAMP	LE
foot	. From · To	Semple	O · 6	6 . 12	To 17 - 18		Élev.	plants in rock, etc.)	No.	Pen	. Pec.
	0.0 - 2.0'	1 55	<u> </u>	9	10	11	0.5	Maist, laose TOPSOIL		24"	16"
•							7.5	Moist, medium mixed brown and black sllt, send and gravel		!	
	4.5 - 6.0'	SS SS	9	[5	32		7.0'	Moist to wet, dense fine/coarse brown and grey sand, little to some silt, trace of fine/medium gravel and cobbles		18"	15"
	9.5 - 11.0	55	7	11	13		12.51	wet, medium fine/coarse grey sand, trace of silt and fine/medium gravel	3	18"	16"
-	14.5 - 16.01	SS	17	23	.24		18.04	Wet, dense fine/coarse grey sand some fine/medium gravel, trace to little silt, trace of cobbles	4	18"	13"
	19.5 - 20.5'	SS	102	117			20.5	Moist, very dense, brown decayed granite, little silt mixed	5	12"	9"_
							.	Bottom of Boring at 20.5' Refusal			
					-					·	
		1			-						

	BLOW CO	UNTS FOR	CLAT	BLOV	COUNTS FOR	GRANULAR	MATE	RIAL
	2 Very Soft	9-15	Stiff		Very Loose			
2 -	-4 Soft	16-30	Very Stiff	_	Loose			Dense
5 -	-B Medium	> 30	Hard	11-30	Modium		⁻	
_								

Proportion used: trace = 0 - 10% little = 10 - 20% some = 20 - 35% and = 35 - 50%

TOWNLine	coln R. I.	 SHEET 1 OF 1
PROJECT NAME	Albion St.,94th ARCCM	 LOCATION B - 3
PROJECT NO	70483	 LINE & STA.

GROUNDWATER OBSERVATIONE		CASING	SAMPLER	CORE BAR.	SUMPAGE ELET
At 51 ft. after 18 Hours	Type Size I.D.	2-1/2"	<u>SS</u>		DATE START: 9-3-86 DATE FINISH 9-3-86
At ft. after Hours	Hammer Wt. Hammer Fall		140 lbs. 30"	âIT	BORING FOREMAN

Caring Blows	Sample Depths	Type	Blown per 6 ¹¹ on Sampler				Strets Change Death	Field Identification of Soil. Remarks (Incl. color, loss of week water,	SAMPLE			
COT	Fram - To	Sample Sample	Q - 6	6-12	To 12 - 18		Eley.	amente în (DCK, 41C.)	Na.	Pen	Rec.	
· · · •		- · · · -	 		-		3"	ASPHALT			_	
	1.0 - 2.51	ŠŠ_	9	16	15	i	1.5	NOTE II	1	18"	14"	
				•				Moist to wet, dense, fine/medium		l		
								brown sand, little silt and fine/		<u> </u>		
	4.5 - 6.0	'I' 55	3	15	.32			medium gravel	2	18"	14"	
		#	ļ			<u> </u>			 -	ļ -		
	 	₩	 -	<u> </u>		··-	7.01			 	<u> </u>	
		₩	<u> </u>			-		i	<u> </u>		<u> </u>	
	9.5 - 11.0	- 55	11	20	19			Wet, dense fine light brown silty	3	18"	(n)	
	723 - 1115	#		<u>*</u> Ÿ	. • -			sand, trace of fine/medium gravel and combles	$\overline{}$	E I	-	
		╫							1901	<u> </u>		
-		<u>† </u>	· ·						\vdash		_ 	
		1		<u> </u>					!			
	14.5 - 16.01	SS	38	85	109	·	15.01	<u> </u>	4	18"		
							16.01	Wet, very dense, fine/coarse, light				
	<u> </u>	<u> </u>		ļ]	1	brown sand, little silt & fine/medium				
							'	gravel				
	<u> </u>	4	<u> </u>					Bottom of Boring at 16.0' Refusal	<u> </u>	\sqcup		
	_	#								\sqcup		
		╫──	 							┡		
		╫┈╌	 			\vdash		NOTE I: Redrave spoon to 11.5"	<u> </u>			
		₩ •						for sample	├			
		╫┈┈┈	h			\vdash			 			
		 						NOTE II; dry, medium fine/medium	Н	\vdash		
		1						brown sand, little fine/coarse				
		1						gravel, trace of silt & coobles				
		1										
		#										
		#							Ш			
	<u> </u>		-			─ ─ 			$\vdash\vdash$	 		
	 	-				 -			$\vdash \vdash \vdash$	 		
	 	#							$\vdash \vdash \vdash$	 		
		#							H	- 		
		1					-					
							٠,	·	- -			
	i	li								1		

BLOW COU C 2 Very Soft 2-4 Soft	NTS FOR CLAY 9-15 Stiff 16-30 Very Stiff	< 4	Very Loose	RANULAR MATERIAL 31-50 Dense > 50 Very Dense
5-8 Mediam	> 30 Hard	11-30	Modium	
Proportion used:	trace = 0 - 10% little	= 10 - 20%	some = 20 - 35	and = 35 - 50%

		BHEST
TOWN	Lincoln R.I.	 LOCATION
ARCHECT NAME	Albian St. 94th ARCCM	 LOCATION HOLE NO. LINE & ST
THOSEO, MANIE	70683	 LINE & ST
PADJECT NO.	70007	

SHEET1	OF	_1
LOCATION .		
HOLE NO	B - 4	
LINE & STA.		
OFFEET		

GROUNDWATER OSSERVATIONS		CASING	SAMPLER	CORE BAR.	300000000000000000000000000000000000000
At 513ff ft. after 3 Hours	Type Size I.O.	2-1/2"	S5 1-3/8"		DATE START: 9-3-86 DATE FINISH 9-4-86
At ft, efter Haurt	Hemmer Wt. Hammer Fall		30"	#i₹ 	BORING FOREMAN C. Rell

	TION OF BORING:	<u> </u>		Blace	per 6"	 -	Strete					
Casing Blows per	Sample Daptie	Type of	Type of Sample Prom		mpler			Field identification of Soil. Remarks (Incl. color, loss of west water,		SAMPLE		
1001	From-To	Sample	0.6	6.12	12 - 18		Elev.	teams in rock, etc.)	No.	Pen	B¢.	
	0.5 - 2.0	\$5	14	85	96		3"	ASPHALT	ī	18"	13*	
	5.5 - 2.g	 	1.				2.0'	NOTE I	<u> </u>			
	4.5 - 6.01	SS.	15	20	20		7.01	Dry, dense, fine/medium, light brown sand, little to some silt, little fine/coarse gravel, trace of cobbles	2	18"	14"	
	9.5 - 11.0'	55	14	20	20			Wet, dense, fine/medium, light brown sand, little to some silt, little fine/coarse gravel,trace of cobbles	3	16"	177	
	14.5 - 16.0'	\$5	32	45	48		15.0*		4	18"	17"	
-	19.5 - 20.75*	SS	28	72	100/3		20.0'	Moist, very dense, fine/coarse, light brown sand, little fine/coarse grave) and silt, trace of cobbles		15"	15"	
<u> </u>	19.5 - 20.75	1 33	-20	- 12	100/2	}		NOTE II	- -		1)	
							-	Bottom of Boring at 20.75' Refusal NOTE 1: dry, very dense, fine/coarse brown sand, some fine/coarse gravel, trace of cobbles. NOTE II: Weathered granite				
				1			·					
	_											

BLOW COUNT 2. Very Soft	15 FOR 9-15	CLAY BLOW CLAY Stiff C 4 Very Stiff 5-10	COUNTS FOR GRANUL Very Loose 31-5	AR MATERIAL
5-8 Mediam	> 30	Hard 11-30 0 - 10%	Modium	·

			BUET
TOWNLINC	oln R. I.		LOCA
PROJECT NAME	Albion St., 94th ARCOM		HOLE
PROJECT NO.	70683		LINE
PHOLEC NO.		_	

SHEET 1	QF	1
LOCATION .		
HOLE NO	B - 5_	
LINE & STA,		
OFFSET		

CROUNDWATER OBSERVATIONS				CASING			SAMPLER CORE BAR. SURFACE ELEV.			4-86						
. 3:30		1		Type		oger			DA1531AN1.	-86 -86						
A1/_/_	ft, sitter 1 Hour			Size 1.D		-1/2 "	1-3/		DRIE 1 1141341							
••			ļ	Нетин		<u> </u>	<u>,140</u>	<u>lbs.</u> Dit	BORING FOREMAN <u>C</u>		<u> </u>					
A1	At ft. after Hours			Hammer	FAII _		<u> </u>	<u> </u>	INSPECTOR							
LOCA	TION OF BORING:															
Casing	Sample	Туре	<u> </u>		per 6" mgter		Streta	Field Ident	Itication of Soil.		SAMP) E				
Blows -	Depths	10	of	of	of	11	From	un	To		Change Depth	Remerks (Incl. co	ior, lose of wesh water,	1		1
tost	Fram - To	5ample	0 - 6	6 - 17	12 - 18		Elev.	1	n mak, etc.)	No.	Pan	Rec.				
•		 	1					Moist loose mi	xed brown and black							
	1.0 - 3.0'	SS	3	4	3	2		•	e of fine/coarse	1	24"	13"				
							3.51	gravel and cobbl								
	_	1		<u> </u>			3.5	<u> </u>								
	4.5 - 6.0'	SS	11	22	23			1	nse to medium,fine/	2	18"	13"				
	·· ·- · -	 	_						, little to some	\ -	· ·					
		#	_	 -	-	-			el and silt, trace	 	\vdash					
	<u> </u>	1		 -				of cobbles		<u> </u>	\vdash					
	9.5' - 11.0'	55	7	13	14					3	18"	16"				
	<u> </u>	1														
		<u> </u>						ì								
			<u> </u>							Ш	igsquare					
		<u> </u>	<u> </u>	 _						\perp	100	<u> </u>				
	14.5 - 16.01	\$5	.9	16	_19			}		4_	18"	17				
	· · · · · · · · · · · · · · · · · · ·	+	_	├──~						$\vdash \vdash$		H				
		 		 				İ		┝╾╌		\vdash				
		 -		<u> </u>				i		Н						
	19.5 - 20'4"	SS	29	100/4	н		20.01			5	10"	94				
							2014"	Weathered Granit	_							
		 				\Box		Bottom of Boring	at 20'4"							
		#				<u> </u>		!		├─ ─┤	,—-					
	-	#	\vdash	1		\vdash	-	1		\vdash	 					
		#	 -	 		 		NOTE: Cas oder	in #1 and #2 samples	┝╾┤	-+					
		1				$\vdash \vdash \vdash$.	#3 and #4 samples	┝─┤						
		1			<u> </u>				and the same of th			==				
		1														
		1														
		1				<u> </u>				$\vdash \vdash \downarrow$	— ∔					
		₩		├		 		· ·		┝╍╌┥	\longrightarrow					
	<u> </u>	╫	 	 		 -		· .			-	 -				
	 	∦~~~				├───┤		l	-							
		1						<u>.</u> .	•							
		1						j .								
		 -						1.								
 -		#	 	├				F			\longrightarrow	 -				
		14		. 1												

BLOK COUNTS FOR		LOW COUNTS FOR G	RANDLAR WATERIAL
422 Very Soft . 9-15	Stiff	<. 4 Yery Loose	31-50 Dense
2-4 Soft 16-30	Very Stiff	-10 Loose) 50 Very Dense
5-8 Medium > 30	Hard 11	-30 Medium	•
Proportion used: trace =	0 - 10% little = 10 -	20% some = 20 - 35%	and = 35 - 50#.
·			

APPENDIX D MONITORING WELL CONSTRUCTION DIAGRAMS

MONITORING WELL	CONSTRUCTION DIAGRAM
Project 94th Rey, feed, Comm AOC MW	-14 Driller Danien Jacobs - Geologic
Project No. 3618046 122 Boring No.	55-01 Drilling Method Geoprobe
Field Technician: CONAU Gill	SS-01 Drilling Method Geoprobe 1/24/06 Development Method Peristal Fic pump Latitude: Longitude:
Checked By: P5M	
Measuring Point Selevation	Stick-up of Casing Above Ground Surface: 2.51
Ground 456 69	Type of Surface Seal/Other Protection: Concrete
Elevation	Type of Surface Casing: Steel
	ID of Surface Casing: 2"
	Diameter of Borehole: 2"
	Riser Pipe ID:
	Type of Riser Pipe: Sch. 40 PUC
	Type of Backfill:P/A
	Depth of Top of Seal:
	Type of Seal: Bentonite Chips
	Depth of Top of Sand:
	Depth of Top of Screen:
	Type of Screen: Sch. 40 PUC
	Slot Size x Length:
	ID of Screen:
	Type of Sandpack: # [
	Depth of Bottom of Screen:12 1
	Depth of Sediment Sump with Plug: 12 1- 111
	Depth of Bottom of Borehole: 121
#1	MONITORING WELL CONSTRUCTION DIAGRAM QUALITY ASSURANCE PROJECT PLAN 94th RRC 2004

Project No. 3618048122 Borin	ng No. MW-140 Driller Geologic Geoprobe
	Installed 5.17.57 Development Method
	Latitude: Longitude:
Checked By:	
Measuring Point Elevation	Stick-up of Casing Above Ground Surface:
Ground Elevation	Type of Surface Seal/Other Protection:
	Type of Surface Casing: Steel
	ID of Surface Casing:3"
	Diameter of Borehole: 2.25 "
	Riser Pipe ID:
	Type of Riser Pipe:
	Type of Backfill: # 1 Sand
	Depth of Top of Seal:6'
	Type of Seal: Bentente
	Depth of Top of Sand:
	101
	Deptit of Top of Screen.
	Type of Screen:PVL
	Slot Size x Length: 0.010" x 10'
	ID of Screen:
	Type of Sandpack: # i Sand
	Depth of Bottom of Screen:
	Depth of Sediment Sump with Plug:
	Depth of Bottom of Borehole: 20'
The state of the s	MONITORING WELL CONSTRUCTION DIAGRAM QUALITY ASSURANCE PROJECT PLAN 94th RRC 2004

Project 94th Reg, Project No. 36180	Feed. Comm, AOC	Driller Danien Jacobs - Geologic Drilling Method Geoprobe Development Method Peristal Fic Pump
Field Technician:f	PSM Date Installed 1/25 Latitude:	Longitude:
Measuring Point Elevation 456.03	Type Type ID of s Diame Riser Type Type Depth Type Depth Type Depth Type Depth Type Depth Depth Depth Depth Depth Depth Depth Depth	up of Casing Above Ground Surface: 2.5 / of Surface Seal/Other Protection: Cement of Surface Casing: Steel Surface Casing: 2 // eter of Borehole: 2 // Pipe ID: 1 // of Riser Pipe: Sch. 40 PUC of Backfill: Natural Callapsc of Top of Seal: NONE of Top of Sand: NONE of Top of Screen: 2 // of Screen: Sch. 40 PUC Size x Length: 0,010 // x 10 // Screen: 1 // of Sandpack: None of Bottom of Screen: 12 // of Sediment Sump with Plug: 12 // -1 // of Bottom of Borehole: 12 // of Bottom o
	МОМ	IITORING WELL CONSTRUCTION DIAGRAM QUALITY ASSURANCE PROJECT PLAN 94th RRC 2004 ———————————————————————————————————

SA	Driller Geologic Drilling Method HSA Development Method	MW- 15D	Boring No.		361804	
	Longitude:			5M	nician: 7;	ield Techr
	7.	56.			Ву:	hecked B
	sing Above Ground Surface:					leasuring levation –
<u> </u>	ce Casing: Sterl	Type of Surfa				levation_
	Casing: 3"	ID of Surface				
	prehole: 7" (3.					
	1"					
	Pipe: PVL	N#M0190000000000				
	of Seal: 7.2	(302) (5				
	Bentonite		74	£2	122	
	of Sand: 9, 2					
	of Screen: JD. 2	Depth of Top	1			
	n: PV L	1.50				
5'	ngth: 0.010" x 3	Slot Size x Le	1 1			
	20	ID of Screen:	- .			
	pack: # Sand					
	m of Screen: 15.2					
	1 5					
			water a	gal.	~ 5-10	ote:
5 i	nent Sump with Plug: 15.5 present b(ou - pi NG WELL CONSTRUCTION ALITY ASSURANCE PRO	Depth of Bott Added + MONITORI	water o	qal .	~ 5-10	Vote:

AND THE PROPERTY OF THE PROPER	2 Boring No. <u>Mw - 20</u>	Driller Gco Logic Drilling Method Gco pake Development Method
Field Technician: TRH	Latitude:	Longitude:
Checked By:		3-
Measuring Point Delevation	Stick-up of C	asing Above Ground Surface: N/A Fluchmount
Ground Elevation	1	ce Seal/Other Protection: Concrete
	W/#	ce Casing: Steel
	12/1	Casing:
	Y//	forehole: 3.25
	K/X	·
	M	Pipe: PVC
	V/3	iii: Sand
	Depth of Top	of Seal:
	500 PMR 1995 - 400000000 PMR 4000	Bentonite
	Depth of Top	of Sand:
• 	Depth of Top	of Screen: 2
	Type of Scree	
		ingth: x 10 '
		<u></u>
	Type of Sand	pack:
	Depth of Bott	om of Screen: 12'
	Depth of Sed	ment Sump with Plug: _/3 '
<u>L</u>	J Depth of Bott	om of Borehole: /3
		NG WELL CONSTRUCTION DIAGRAM JALITY ASSURANCE PROJECT PLAN 94th RRC 2004

oject No. 3618040122.02	Boring No. MW - 20 D	_ Drilling Method _ Geoprobe
1111 B B	Date Installed 5.17.7	Development Method
eld Technician: P5M	Latitude:	Longitude:
ecked By:	**************************************	
asuring Point	Chiefe up of C	N/A
vation —	Stick-up of C	asing Above Ground Surface:
und vation	Type of Surfa	ace Seal/Other Protection:
	Type of Surfa	ace Casing: Steal
		Casing: 3"
	A	
	Diameter of E	Borehole:
	Riser Pipe ID	:
	Type of Riser	Pipe: PVC
	3	fill: # 1 Sand
		81 (4)
. 2		of Seal:
	Type of Seal:	Bentante
	Depth of Top	of Sand:9 /
	1	of Screen: 10'
		(a = 1000
	Type of Scree	en: PV.C
	Slot Size x Le	ength:
	I ID of Screen:	
	Type of Sand	pack: #15and
		201
	Depth of Botto	on or screen.
	Depth of Sedi	iment Sump with Plug:20'
<u></u>	Depth of Botto	om of Borehole: . 20 /

		Driller <u>Gro Logic</u> Drilling Method <u>Gro proble</u>
		Development Method
Field Technician: TKH		
Checked By:		
Measuring Point Clevation	Stick-up of	Casing Above Ground Surface: Flush האטריה לנטוד
around	Type of Sur	face Seal/Other Protection: Contract
ilevation	Type of Sur	face Casing: McTal
	ID of Surfac	ee Casing:3
	Diameter of	Borehole: 3. 25
	Riser Pipe I	D:
	Type of Ris	er Pipe:Pvc
	75	skfill: Sand
		p of Seal:
	Type of Sea	al: Berronie
	Depth of To	p of Sand:
•	Depth of To	p of Screen: 2'
	Type of Scr	een: PVC
	Slot Size x	_ength:,∂/0 × / 0'
	ID of Scree	n:
	Type of Sar	idpack: #1 Shnf
		Itom of Screen: /2'
	Depth of Se	diment Sump with Plug: /3
	Depth of Bo	ettom of Borehole: 13'
		RING WELL CONSTRUCTION DIAGRAM QUALITY ASSURANCE PROJECT PLAN

Project No. 368048122-02	Boring No. MW-21D	Drilling Method + S A
	Date Installed 6.7.07	Development Method
Field Technician: BM	Latitude:	Longitude:
Checked By:		2
Measuring Point	Stick-up of	Casing Above Ground Surface: N/A
round levation	Type of Su	urface Seal/Other Protection: Concrete
	V/7	
	7/1	ice Casing: 3"
		of Borehole: 7" (3.25" augers
	//	ID:
		ser Pipe:
	//	op of Seal: 4.5
		pal: bentonite
		op of Sand: \lambda
•		op of Screen: 12.5
	1	reen: PL
	1 Slot Size x	Length: 0.010" x 5'
	ID of Scree	en:
		andpack: # 1 Sand
		ottom of Screen: 17.5
		ediment Sump with Plug: 17.5
Note: ~ 10 gd a		ottom of Borehole: 17.5 refusal
yvote. ~ 10 gar a		TO prevent blow-in. RING WELL CONSTRUCTION DIAGRAM

Date In	nstalled 5 16 0 7	Drilling Method Geopeube Development Method
ield Technician: ТКИ	Latitude:	Longitude:
checked By:		<u> </u>
easuring Point	Stick-up of	Casing Above Ground Surface: Flush
round evation	Type of Sur	face Seal/Other Protection: Concrete
	Type of Su	face Casing: METAL
	ID of Surface	te Casing:3
	Diameter of	Borehole: 3, 25 "
	Riser Pipe	D:/^
	Type of Ris	er Pipe:
	Type of Bad	skfill: Sand
	Depth of To	p of Seal:
	Type of Sea	al: Benjon Fre
		p of Sand:/, 5 /
	500 SE - 100	p of Screen: 2'
		een: PVC
		Length:0/0 × /0 '
		n: _/"
		ndpack: # /
	. 10 J. C. 18 (10 J. 1	V
	**	ettom of Screen: 12'
		ediment Sump with Plug: <u>4.5</u>
	Depth of Bo	ottom of Borehole: 12,5

Stick-up of Casing Above Ground Surface: Type of Surface Seal/Other Protection: Type of Surface Casing: Type of Surface Casing: Diameter of Borehole: Riser Pipe ID: Development Method Longitude: N/A Coucrete 17 Coucrete 17 Coucrete 17 Coucrete 17 Coucrete 17 PVC
Stick-up of Casing Above Ground Surface: Type of Surface Seal/Other Protection: Type of Surface Casing: Steel ID of Surface Casing: Diameter of Borehole: Riser Pipe ID:
Type of Surface Seal/Other Protection: Type of Surface Casing: "Stee! ID of Surface Casing: Diameter of Borehole: Riser Pipe ID:
Type of Surface Casing:
Diameter of Borehole: 7" (3.25" avgers
Diameter of Borehole: 7" (3.25" avgers
Riser Pipe ID:
Riser Pipe ID:
the second secon
Type of Backfill:
Depth of Top of Seal:
Type of Seal: Bentonte
Depth of Top of Sand:
Depth of Top of Screen: 12'
Type of Screen:PVL
Slot Size x Length: 0.010 " × 5'
ID of Screen:
Type of Sandpack: ** Sand
Depth of Bottom of Screen:
Depth of Sediment Sump with Plug:
pepth of Bottom of Borehole: 17 refusal ydrant added to bore hole during construct

Project No. 3618046123 Bor	
	Latitude: Longitude:
hecked By:	
easuring Point Olevation	Stick-up of Casing Above Ground Surface:
round evation	Type of Surface Seal/Other Protection:
	ID of Surface Casing: 3
	Diameter of Borehole: (3-25 "avger) 7" bor
	Type of Riser Pipe: PVC
	Type of Backfill: Sand
	Type of Seal:
	Depth of Top of Sand: 2 '
	Depth of Top of Screen: 2 '
	Type of Screen:
	Slot Size x Length: D. o lo " x 10 '
	Type of Sandpack: Sand
	Depth of Bottom of Screen: 12
	Depth of Sediment Sump with Plug: 12 '
	Depth of Bottom of Borehole: \\3'
3	MONITORING WELL CONSTRUCTION DIAGRAM QUALITY ASSURANCE PROJECT PLAN 94th RRC 2004

	CONSTRUCTIO	N DIAGRAM
Project 94 Thee, Lincoln, AOC Site	04	Driller Greolog. 2
Project No. 36/80/8/122 Boring No.	MW - 24 D	1/20
	The second secon	Development Method
Field Technician: PTM	_atitude;	Longitude:
Checked By:		
Measuring Point Elevation Ground Elevation	Stick-up of Case Type of Surface Type of Surface ID of Surface Continued on the surface of Both Surface of Both Surface of Both Surface of Both Surface of Both Surface of Backfill Depth of Top of Seal: Depth of Top of Surface of Su	f Seal:
	Depth of Bottor	m of Borehole: 15.3' refus d
A	MONITORIN	G WELL CONSTRUCTION DIAGRAM ALITY ASSURANCE PROJECT PLAN 94th RRC 2004

APPENDIX E MONITORING WELL DEVELOPMENT RECORDS

WELL	EVELOPMENT RECORD	1 To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Project: 4th Reg. Reed. Comm.	Well Installation Date:	and the same of th	Project No.
Client:	Well Development Date:	Logged by:	Checked by:
Well/Site I.D.: MW-14	Weather: Cloudy, v. windy,	Start Date: 1 • 26 • 06	Finish Date: 1.26.06
Well Construction Record Data:	Well Diameter /	in. Start Time:	Finish Time:
Sediment Sump/Plug	rom Ground Surface 1 From Top of Ris	er 🗅	
Screen Length Io tt.	Fluids Lost during Drilling	gal.	
Protective Casing Stick-up ft. Protection	ve Casing/Well Diff. ft. PID	Readings: Ambient A	ppm
Well Levels: Sedii	ment:		
Initial PC 3.19 II. We	Il Depth before Development	(from top of PVC	C)
<u> </u>	II Depth after Development 13.55		(*)
T. See a se	diment Depth Removed 1.35	ft.	
HT of Water Column ft. x	.68* gal./ft. =	gal./vol. *for 4* HSA Ins	talled Wells
☐ Surge Block	oximate Recharge Rage Gallons Removed 7	gpm gal.	
Notes: Sekiment is v. fine grey si Rmy rate at 500ml/min Skeen todor noted in per Contain into 55 gal drum Well Cleans nicely End of Well Development Sample (1 pint) Collected?	■ Sediment thi well is <1.0% ■ Total water r of 5x calcula 5x drilling flu ■ Turbidity < 5		Yes No
Water Parameter Measurements Record at start, twice during and at the end of developm	ent (minimum):		
Time Volume Total Gallons	pH 7-emp. Conductance 0.453		umping Rate
	.62 8.4 0.353 .70 8.3 0.430	- 40	2.50/m
	.70 8.3 0.430 .79 8.1 0.421	68.6	0.5l/m
Well Developer's Signature ###		VELOPMENT RI ANCE PROJECT 94th RR	ΓPLAN

Purpe vol HTT 1

	WELL D	EVELOPMENT RE	CORD		
Project: 94 th RRC	Lincoln, RI	Well Installation Date:	5. 17.0	7	Project No. 3618048122
Client: Kemron		Well Development Date:	5.18.07	Logged by:	Checked by:
Well/Site I.D.: MW -	140	Weather:	+ I drizzle	Start Date: 5.18.07	Finish Date: 5 · 18 - 07
Well Construction Record Da Bottom of Screen		Well Diamet	er \ \ in.	Start Time:	Finish Time:
Sediment Sump/Plug	20	rom Ground Surface 🔾 Fr	rom Top of Riser 🗖		- 1
Screen Length	lo ft.	Fluids Lost during Drilling	N/A gal.		
Protective Casing Stick-up	₽/A ft. Protecti	ive Casing/Well Diff. か//	↑ ft. PID Rea	Well Mou	. o ppm
Well Levels:	Sedi	ment:		19	
Initial	2,73 ft. We	ell Depth before Developme	nt 19.3 ft.	(from top of PV	C)
End of Development		ell Depth after Development			
24 Hours after Development	P/A ft. Se	diment Depth Removed	0 · (ft.		
HT of Water Column	16.6 ft. × 5	1.68* gal./ft.	0.68	gal./vol. \	stalled Wells
Dedicated Submersible Surge Block Bailer D 2" D Grundlos Pump 2"	Total	oximate Recharge Rage I Gallons Removed	gpm 9.7 gal.		
Notes: 9,7 Slight End of Well Development Si	petroleum o	dor	Well water clear to Sediment thickne well is <1.0% of some Total water remore of 5x calculated with 5x drilling fluid loss Turbidity < 5NTU 10% change in fie	ss remaining in creen length ved = a minimum vell volume plus st	Yes No
Water Parameter Measurem	63	1420 1900	511551 (12	-13/	
Record at start, twice during a	Total Gallons	pH Temp. 6 17 9.25	Conductance 0.453	71000	Pumping Rate
1110 2.0		6.19 9.13	0.432	139	<u> </u>
1135 2.6 1208 3.5	9.7	6.24 <u>9.11</u> 6.16 <u>9.10</u>	0.468	32,9	u u
Well Developer's Signature _	Maly 1. 44	20_	WELL DEVE TY ASSURAN	CE PROJEC	
					CTEC. Inc.——

WELLI	DEVELOPMENT RE	CORD		
Project: 94th Reg. Reed. Comm.	Well Installation Date:	mily)	er colony, endinan	Project No.
Client: Kemron	Well Development Date:	a white	Logged by:	Checked by:
Well/Site I.D.: MW'-15	Weather: Sun+clave Cold 20's	s, undy,	Start Date: 1-26-06	Finish Date: 1.26.06
Well Construction Record Data: Bottom of Screen	Well Diame	ter / in.	Start Time:	Finish Time:
Sediment Sump/Plug 12 ft. - F	From Ground Surface P	rom Top of Riser 🗅		
Screen Length 10 ft.	Fluids Lost during Drilling	gal.		
Protective Casing Stick-up ft. Protect	tive Casing/Well Diff.	ft. PID Rea	dings: Ambient Well Mou	ppm
Well Levels: Sedi	ment:			-
Initial PVC 2.82 It. W	ell Depth before Developme	13.00 ft.	(from top of PV	C)
End of Development 2.88 ft. W	ell Depth after Development	13.70 ft.		
24 Hours after Development ft. Se	ediment Depth Removed	0.70 ft.		
HT of Water Column ft. x	1.68* gal./ft. =		gal./vol. *for 4* HSA In:	stalled Wells
□ Surge Block	oximate Recharge Rage	gpm 4 gal.		
Notes: Sediments in purple water con V. five brown-light brown silt from the: 500 ml fmin Sheen + odor in purple was Well cleared up sicely End of Well Development Sample (1 pint) Collected?	for	■ Well water clear to Sediment thickne well is <1.0% of sometiment of 5x calculated with 5x drilling fluid loson Turbidity < 5NTUs 10% change in fie	ss remaining in creen length ved = a minimum rell volume plus t	Yes No
Water Parameter Measurements Record at start, twice during and at the end of developm	nent (minimum):			V.
Time Volume Total Gallons	pH Temp. 9.4	Conductance	Turbidity F	Pumping Rate
	6.23 2.8	0.085	33.0	" "
1045 1 gal 3 gols	6.19 2.6	0.085	23.7	11
1053 Igal 4gals	6.18 2.4	0.085	16.6	
Well Developer's Signature	QUALI	WELL DEVEL	CE PROJEC 94th RF	

Project:	Well Installation Date:			Project No.	
94th RRC Lincoln, RI	6.7.07		Logged by:	3618048122	
Client: Kemren		Well Development Date: 6 · 12 · 0 7 Weather: Cloudy 70°F			
Nell/Site I.D.: Mw. 15 D	Weather: Cloudy				
Well Construction Record Data:	Well Diamei	· im	Start Time:	Finish Time:	
Sediment Sump/Plug	From Ground Surface X Fr	rom Top of Riser 5	1		
Screen Length 15.2 ft. 5 ft.	Fluids Lost during Drilling	2.3 gal	1		
Protective Casing Stick-up	Protective Casing/Well Diff. N	A ft. PID Re	adings: Ambient	18897	
			Well Mou	th	
Well Levels: 4.21 6/19/07	Sediment:		41.	6 6/19/07	
Initial 2.80 ft.	Well Depth before Developmen		(from top of PV	C)	
End of Development 7.20 ft. I(.	5 Well Depth after Development	14.7 11.			
24 Hours after Development ft.	Sediment Depth Removed	1.2 ft.			
HT of Water Column	x □ 1.68° gal./lt. =	7.0	gal./vol. *for 4* HSA Ins	stalled Wells	
Equipment:			7		
Dedicated Submersible Pump	Approximate Recharge Rage	gpn	1		
☐ Surge Block ☐ Bailer ☐ 2" ☐	Total Gallons Removed	40 gal			
Grundlos Pump 2" 4" 4" Peris faltic yump Well Development Criteria Met:					
Notes: Petroleum odor +	cheen	. Maril	As considered access	Yes No	
20074		 Well water clear Sediment thickn 		X	
P18 = 94.3 pp=	·	well is <1.0% of		¹ / ₂	
			well volume plus	M -	
		5x drilling fluid lo Turbidity < 5NTU		⊃ x	
End of Well Development Sample (1 pint) Collect	Yes No.	10% change in f		2 2	
Water Parameter Measurements					
Record at start, twice during and at the end of dev	2005 EEE	Conductance	MTU Turbidity P	umping Rate	
Time Volume Total Gallons	637 Temp. 12.62	0. 423	Turbidity P	500	
1043	6.20 12.15	0.448	18.6	500	
11/6	6-29 12.51	0.460	9.03	500	
1130	6.35 12.60 6.14 12.37	0.440	17.20	556 600	
Well Developer's Signature Ml. 1-	after	0.521	20.2	600	
1135 (6/19)	6.14 12.49 QUALIT		LOPMENT R		
Begin purging @ 0837 on	6/19/07, stop @ 110	15	94th RF	RC 2004	

WE	LL DEVELO	PMENT RE	CORD			
Project:	Well Inst	allation Date:	100	- 17 - 17	Project No.	
94th RRC Lindly, R.			5.16.07		3618048122	
Client: Kem 10 h	Well Dev	relopment Date:		Logged by:	Checked by:	
Vell/Site I.D.: MW-20	Weather	And the state of t	500	Start Date: 5.11.01	Finish Date:	6.20
Vell Construction Record Data:	WE	Well Diame	eter	Start Time:	Finish Time:	
Bottom of Screen 12 ft			in.	11:25	1202	
Sediment Sump/Plug	From Groun	d Surface 🔀 🛛 F	rom Top of Riser			
(Pw) 15 12 ft.						
Screen Length /O ft.	Fluids Lo	st during Drilling	N/A gal			
Protective Casing Stick-up	Protective Casing/	Well Diff. 4/63	4 ft. PID Re	adings: Ambien	0 0 ppm	
.,		34		Well Mo	outh 1.6 ppm	
Vell Levels: 5.73 4.75	Sediment:					
Initial (6.20.07) 8.81 ft.	Well Depth be	efore Developme	ent 10.90 ft.	(from top of P	VC)	
End of Development 5. 01 ft.		ter Developmen	t 11.47 ft.			
24 Hours after Development N/A ft.	Sediment Dep	oth Removed	0.57 ft.			
HT of Water Column 6.15 ft.	x ☐ 1.68* gal./ft	. =	1.10.25	gal./vol.		
				- HSA I	nstalled Wells	
Equipment:	9 8 8 8 <u>8</u>	W 620		1	Ŀ	
□ Dedicated Submersible Pump□ Surge Block	Approximate Re	echarge Rage	gpn	n		
☐ Bailer ☐ 2" ☐	Total Gallons R	emoved	3/3 gal			
Grundfos Pump 2" 4"			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>		
Vell Development Criteria Met:		(1	9 12.3			
	-				Yes No	
Notes: No oder or sheen			■ Well water clear	[: [1] [: [: [: [: [: [: [: [: [: [: [: [: [:	1 0	
purge water			 Sediment thickn well is <1.0% of 		3 0	
1 and 1 and	<u></u>		■ Total water reme	oved = a minimu		
	*****			well volume plus		
			5x drilling fluid to ■ Turbidity < 5NTU		a, ¥,	
End of Well Development Sample (1 pint) Colle	Yes No cted?		■ 10% change in f	ield parameters		
Motor December Managements					- '(F)	
Water Parameter Measurements Record at start, twice during and at the end of de	velonment /mini-	nw).			1	
V N			0.20	The second position in the con-		
Time Volume Total Gallons	5.98	7.26	O. 246	Turbidity	Pumping Rate	
					300 350	
	25.57	8.86	0.339	45		
1201 25 0.5 29/162	.3 5.58	8.83	0.340	17		
0933 (6.20.07)	5.33	12.7	0.212	372	660	
Well Developer's Signature	5-37	-12.4	0.227	6.54 LOPMENT	600	
1015		ΩΠΔΙΙ	WELL DEVE			
Begin Riverna a 1900		Y	W beautiful to		RC 2004	
Degin Ruging @ 0933	6.20.07	Stop @	1030		ACTEC Inc	

	WEL	L DEVELO	PMENT REC	ORD			
Project: 94th RRC	Lincoln RI	THE CHARLEST WALKERS	llation Date:	7		Project No. 3618048122	
Client: Kemesn			elopment Date:		Logged by:	Checked by:	
Well/Site I.D.:	lo D	Weather:	Pain Win	d 40°s	Start Date: 5. / 8.07	Finish Date:	6.2
Well Construction Recor	d Data:	•	Well Diamete		Start Time:	Finish Time:	
Bottom of Screen	20 ft			I in.	1016	1057	
Sediment Sump/Plug	20 ft.	From Ground	Surface X Fro	m Top of Riser	(8-7)		
Screen Length	10 ft.	Fluids Los	st during Drilling	M/A gal.	(Pi	۵)	
Protective Casing Stick-up	- /4	rotective CasingA	Well Diff. N/X	ft. PID Rea	Ambien Well Mo	0 0.6 ppm	·20.
Well Levels:	(6.20.07)	Sediment:			1.	6 ppm (6.20.	.07
Initial 6.28	5.16 ft.	Well Depth be	fore Development	19.27tt.	(from top of P		
End of Development	5,31 ft.	Well Depth aft	er Development	19.31 tt.	1940	(4.20.07)	
24 Hours after Developm	nent N/A ft.	Sediment Dep	th Removed	0.04 ft.	3		
HT of Water Column	14.11 ft.	1.68* gal/ft.	gal /fit =	2,58	gal./vol. " tor/*-HSA	Installed Wells	
☐ Dedicated Submers ☐ Surge Block ☐ Bailer ☐ 2" ☐ ☐ ☐ Grundfos Pump 2" ☐ Peristaltic Well Development Criter	4"	Approximate Re		3.7 32 gal.	Pm 2		
Notes: Purge	100	= 1.2 pp		Well water clear Sediment thickner well is <1.0% of 1.0% of 5.00 to 1.0% calculated 5.50 to 1.00 to 1.	ess remaining ir screen length oved = a minimu well volume plus st Js	ım 🗹 🗆)
Water Parameter Measu	rements						
Record at start, twice dur	ng and at the end of dev	elopment (minimu	um):			8	
4 2 2	lume Total Gallons 1.2	6.03	Temp. 8.61	Conductance	Turbidity 194	Pumping Rate	
1040 0.		5.91	E Control	0.219	118	-	
1050 0.		5.89	8.92	0.270	45.2		
1055 0.4	4 3.1	5.89	8.88	0.211	35,5		
094 ((6.20.≪4) Well Developer's Signatu	re II 1:4	7 5-89	11.02	0.293	38.9	700	
0954 (620.0	17	5.68	10.80	WELL DEVE			
	(1	.20.07)	QUALIT	Y ASSURAN		RRC 2004	
2004005b L 6	9 0 0935	1 Stop	@ 1005	# 5		ACTEC. Inc.	

WELL DEVELOPMENT RECORD							
Project: 94 Th RRC L	incoln RI	Well Instal	Well Installation Date: 5 16 07			Project No. 36/8040122	
Client: Kenalon	· / /	Well Deve	lopment Date:	7	Logged by: てんり	Checked by:	
Well/Site I.D.: MW-22	21	Weather:		50 "	Start Date(17)	Finish Date (Fin)	
Well Construction Record Da			Well Diamete	er ,	Start Time:	Finish Time:	
Bottom of Screen	12 #			in.	1945	1505	
Sediment Sump/Plug	13 ft.	From Ground	Surface D Fr	om Top of Riser 🕱	(2)		
Screen Length	IO ft.	Fluids Los	t during Drilling	MA gal.			
Protective Casing Stick-up	<u>M/A</u>	ective Casing/V	Vell Diff. 4lur	h ft. PID Rea	Ambient Well Mo	O.O ppm	
Well Levels:	4.46 6.20.07	ediment:		1564		1.1 (6.20.0	
Initial (6.20.07)	0		ore Developmer	H-13 11.	(from top of PV	The same of the sa	
End of Development 90	3.37 ft.	Well Depth afte	er Development	11.35 ft.	11.40	(6.20.07)	
24 Hours after Development	1 1 11	Sediment Dept			0.46	(6.20.07)	
HT of Water Column	7.72 ft. ×	1.68° gal./ft.	<u>]</u> .	3 0 32	gal./vol. *for 4" HSA Ir	estalled Wells	
□ Dedicated Submersible I □ Surge Block □ Bailer □ 2" □ □ Grundlos Pump_2" ✓ paris taltic	T	pproximate Rec	50	5,5 gal.	(F)		
Well Development Criteria M Notes: No 5	et: heen or ad	s/	<u> </u>	■ Well water clear	to unaided ave	Yes No	
710 = 1.5	ppm in p	urge w	vter	Sediment thickne well is <1.0% of s Total water remo of 5x calculated v	ess remaining in screen length oved = a minimur	2 0 n 2 0	
End of Well Development Sa	ample (1 pint) Collected	Yes No		5x drilling fluid lo: Turbidity < 5NTU 10% change in fie	ls	M A Pur	
Water Parameter Measureme	ents						
Record at start, twice during a		pment (minimu S, 38	m): OC Temp. 10.12	Conductance 0, 234	71000	(mL/m) Pumping Rate 320 ml/min	
1430 1.3	2.6	5.70	9,57	0.245	260		
1445 1.3	3.9	5.67	9.35	0,232	36		
1500 1.3	OX5.2	5.10	4.62	0.236	31	<u> </u>	
0900 (6.20.07)	DT 460	5.94	11-96	0.271	7.01	700	
Well Developer's Signature	yh IV	211	-12.00		LOPMENT F	RECORD	
			A CONTRACTOR CONTRACTOR CONTRACTOR	TY ASSURAN		경영하다 [16] - 일시난 경이에 다시살	
Begin purqueg	@ 0840 (6	20.07)	stop @	0911	(6-20-07) _{MA}	CTEC. Inc.	

.

WELLI	DEVELOPMEN	T RECORD		
Project: 94th RRC, Lincoln, RI	Well Installation D	ate: 2 . • 7		Project No. 361804812
Client: Kemron	Well Development		Logged by:	Checked by:
Vell/Site I.D.: MW - 21 D	Weather:	, 70°F	Start Date: 6 · 12 · 0 7	Finish Date: 6-20.07
Well Construction Record Data:	Well	Diameter.	Start Time:	Finish Time:
Bottom of Screen 17. 8 ft.	rom Ground Surface	➤ From Top of Ri		1
Screen Length	Tom Ground Buriace	Trom rop or m	301 3	
Screen Length 5 ft.	Fluids Lost during	Drilling 2.6	gal.	
Protective Casing Stick-up N/A ft. Protect	tive Casing/Well Diff.	MA ft. PI	D Readings: Ambient	o ppm
· ·			Well Mon	
Vell Levels: 4.76 (6.19.07) Sed	iment:		3.5	6.19.07
- · J II.	ell Depth before Dev		ft. (from top of PV	(C)
	ell Depth after Devel	opment 16. (t. 16.7 (6.20.07)
24 Hours after Development ft.	ediment Depth Remo	ved 0. 6	o.7 (6.20.07)
HT of Water Column /3.87 ft. ×	1.68° gal./ft.	= 8.1	gal./vol.	stalled Wells
Grundtos Pump 2" 4"	in purge buc	44.5 ket	yai.]	
Well Development Criteria Met:	, () . 	ř.		Yes No
lotes: Slight petroleum ad	or (may be 1:		clear to unaided eye nickness remaining in	X 0
previous well) PID = 8.7 ppm	7	well is <1.0	% of screen length removed = a minimum	2
P10 = 5.2 pm after	30 min.		ated well volume plus	31.5%
purging . PID = 3.3 ye	<u> </u>	■ Turbidity <	5NTUs	□ X , □ X
End of Well Development Sample (1 pint) Collected?	D M	■ 10% change	e in field parameters	<u> </u>
Vater Parameter Measurements Record at start, twice during and at the end of developm	nent (minimum):		U	w. 1 ·
Time Volume Total Gallons	ے ^{: (minimum):} pH Ten	and the state of t		Pumping Rate
	6.45 11.4	0 0.362	790	500
300	6.40 11.4			500
1326	40 11.1			500
1208 (6.19)	1 61	72 0.390		3500 400
Vell Developer's Signature		02 0.47	1 16.2	500
6050 (6.20)	6.76	WELL DE	VELOPMENT R RANCE PROJEC	
R. C mad Code	of) stop	(ALITY ASSUR		RC 2004
		180 110 1-3		CTEC. Inc.—

ECORD		
5.16.07		Project No. 36/804-8 12-2
	Logged by:	Checked by:
to's	Start Date: 5 · 10 · 07	Finish Date: 5.18.07
	Start Time:	Finish Time:
g gal.		
ft. PID Rea	uings.	0.0 ppm
	<u>.</u>	0.8 (6.20.0
ent 11.29 ft.	(from top of PVC	
The second secon	11.75 1	6.20.02
0.4-1 ft.)
038	gal./vol. 2 h	talled Wells
gpm 6,3 gal.		
 Sediment thickness well is <1.0% of s Total water remove of 5x calculated water 	ss remaining in creen length ved = a minimum vell volume plus	Yes No
■ Turbidity < 5NTU	S	0 6
0.302. 0.300 0.300 0.305 0.293 WELL DEVEL	33 152 45.0 263 11.9 OPMENT RECE PROJECT	T PLAN
0820		C 2004 TEC. Inc.
	Solidio 7 Solidio 7 Solidio 7 Solidio 7 Solidio 7 Solidio 8 Enter 1 in. From Top of Riser Grant 11.29 ft. II. 70 ft. O.41 ft. II. 338 Well water clear thicknee well is <1.0% of soliding fluid lose Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity < 5NTU: Turbidity	Solution of the standard stand

Project: 94 TA RRC Lincoln, RI	Well Installation Date:			Project No. 3618048 1
Client: Keuron	Well Development Date:		ed by:	Checked by:
Well/Site I.D.: MW- 22 D	Weather: Clarky	Start 6-13	Date:	Finish Date: 6. 19.07
Well Construction Record Data:	Well Diameter	Start		Finish Time:
Bottom of Screen			323	1606
Sediment Sump/Plug	From Ground Surface 🗯 From	Top of Riser □		
Screen Length	- "			
5 ft.	Fluids Lost during Drilling	2.5 gal.	8	
			Ambient Air	
Protective Casing Stick-up MA ft. Protect	ctive Casing/Well Diff. NA	ft. PID Readings:	0.1	ppm
			Well Mouth	ppm
Well Levels: (6-19-07) Sec	liment:		1	
Initial 3.3/ 2.67 W	Vell Depth before Development	14.6 ft. (from	top of PVC)	
	vell Depth after Development	16.6 ft.		
	ediment Depth Removed	2.0 ft.	E.	
UT ()11. 0.1	1.68° gal./ft. =	i all hu		
HT of Water Column 14.47 ft. ×	_ =	8.5 gal./v	oı. " HSA İnst a	illed Wells
☐ Surge Block ☐ Bailer ☐ 2* ☐ Total	oroximate Recharge Rage al Gallons Removed	— gpm 46 gal.		
Grundios Pump 2" 4" eneck valve	I see water			
Well Development Criteria Met:	(see wates)			30200 C 2000
Notes: PID = 0.5 ppm pur	ge water " "	ell water clear to unaid	ed eye	Yes No □
		ediment thickness rema ell is <1.0% of screen le		X 0
	■ T	otal water removed = a	minimum	X o
(National Association of the Control		5x calculated well volu drilling fluid lost	me plus	
2	■ T	urbidity < 5NTUs	55 C. C. C. C. C. C. C. C. C. C. C. C. C.	M D
End of Well Development Sample (1 pint) Collected?	Ö X ■10	% change in field para	neters	
Water Parameter Measurements				2 020
Record at start, twice during and at the end of develop	ment (minimum): (・)	(ms/cm) (NTU) (•	سد (سیث)
Time Volume Total Gallons		onductance Turbic	40.50	mping Rate
1338				500
1340 (6.19)	11 07	0.232 40:		700
1449 (6.19)	6.41 11.84	0.221 11.		700
1600 (6-19)	6.38 11.63	0.216 4.	17_:	700
Well Developer's Signature Aux 7. Lye	il.			
Well Developer's Signature		ELL DEVELOPM	FNT RF	CORD
oto: 12 gallons removed w/ 5/a	" op John 9 and W Sand Venwe QUALITY			
superado alade de lale	C. J. Complet WOALITT	6 (6.9.07)	OULCI	LEWIA

Project	L DEVELOPMENT RE Well Installation Date:			Project No.			
94 Th RRC Lincoln, RI	The state of the s	6.8.07					
lient: Kemron	Well Development Date:		Logged by:	Checked by:			
Vell/Site I.D.: MW - 24 D	Weather: Mosfly closely	, 70°F	Start Date: 6-12-97	Finish Date:			
Vell Construction Record Data:	Well Diamete	er _	Start Time:	Finish Time:			
Bottom of Screen		in.	1403	1520			
Sediment Sump/Plug	From Ground Surface 🛭 From	om Top of Riser 🗆					
Scroon Longth -							
5 ft.	Fluids Lost during Drilling	gal.					
Protective Casing Stick-up N/A ft · Pro	otective Casing/Well Diff.	Ff PID Rea	Ambient	5. 전환 전 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
Total State of the state of the	7 7.	11.	Well Mo	o.o ppm uth			
1. 19:8	7)			6.0 ppm			
Well Levels: 5.09 6.11	Sediment:		Ð	0.0 (6.19.0=			
Initial 3. 90 ft.	Well Depth before Developmen	13.69 ft.	(from top of PV	/C)			
End of Development 14.3 ft. (dry	Well Depth after Development	14.36 tt.	6				
24 Hours after Development ft.	Sediment Depth Removed	0.7 ft.					
	☐ 1.68* gal_/ft.	0.9	I				
HT of Water Column / tt. ×	x 0.041 =	0.42	gal./vol. *(or 4" HSA In	stalled Wells			
Equipment:			A)				
SOUTH TO DESCRIPTION OF THE PROPERTY OF THE PR	Approximate Recharge Rage	, gpm					
☐ Surge Block	Total Gallons Removed	3.0 gal.					
☐ Bailer ☐ 2" ☐ 4"		gui.	lá				
Verstaltic Vell Development Criteria Met:							
To the state of th				Yes No			
Notes: 0 1420 well is dry		Well water clear Sediment thickne		X D			
rate was 500ml min.	Wait 20min.	well is <1.0% of s		X □			
Begin pu-yes 0 300	al/min until dry "	Total water remo		n K 🗅			
Purge water PID = 23	3 ppu	5x drilling fluid los	st	220			
	Yes No	Turbidity < 5NTU 10% change in fie		⊃ X □ X			
End of Well Development Sample (1 pint) Collecte	ed? 🗅 🕱 🧂						
Water Parameter Measurements							
Record at slart, twice during and at the end of devel	70 IS IS IS IS IS IS IS IS IS IS IS IS IS	ms/cm	MTU	be you and			
Time Volume Total Gallons	6-66 /2.87	conductance 6.496	Turbidity 1	Pumping Rale			
1454	6-65 13.63	0.499	35.8	300			
1504	6.52 12.98	0.491	26. 8	700			
1514	6. 71 13. 45	0.490	25-I	300			
1610	6.56 16.00	0.476	170	450			
Well Developer's Signature	e-						
		WELL DEVE					
		Y ASSURAN		T PLAN RC 2004			
Begin purging @ 1550/6-19.	07) dry after 4	ments.		CTEC. Inc.——			

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	SAMPLIN	IG .	117.0	JOB NL	JMBER	
PROJECT	Linco	in, RI	94Th RRC	FIELD SAN	APLE NUMB	IER	*]	EVENT NO.	
SITE ID	MW-	- 132	Car.		SITE TY	PE				DATE 1.27.06	
;TIVITY	START (C	30 EN	D 1220	SAMPLE T	IME	pm 1200	-		FILE	TYPE	
WATER L	EVEL / PUMP S	ETTINGS		JREMENT POINT		electron describede de 200 ano	MACC.		U 2007-7-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	Della di la Comp	
INITIAL DE	PTH 3	47.	то	P OF WELL RISER OP OF PROTECTIVE		PROTECTIV CASING STI	CKUP		DIFFER	ENCE FT	
TO WA		.47	FT HISTOR	RICAL		(FROM GRO	OUND) [FT	WELL		
TO WA	TER 4.	28	FT (TOR)	21.2	(mers.)	PID AMBIENT AI	R O	PPM			
SCREEN L	ENGTH	O' (assume	PRESS	103.5		PID WELL			INTEGF		
		U CSJ			PSI	MOUTH	0	PPM	CAS	ING X	
TOTAL V	SED 2		GAL SETTIN	IG		DISCHARGE SETTING			COLL		
	(purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) PURGE DATA SPECIFIC PUMP										
1	DEPTH TO	PURGE	TEMP.	CONDUCTANCE	рН	DO	TURBIDITY	REDOX	INTAKE		
1056	3.61	RATE (ml/m)	(+/- deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(+/- mv)	DEPTH (II)	COMMENTS	
1101	3.86	120 pm	Degla	Purging					12	11:	
1107	4.12	150					40.4		12	- iv."	
1110	Hooky	to	Horiba	(rest) in its	18				12	n:	
1114	4.20	130	8.9	0.072	6.55	-	34.5	130	12	'U	
1119	4.22	130	6.1	0.077	6.46	-	29.9	151	12	"	
1128	4.28	130	5,0	0.080	6 143	-	24.9	167	12	- 4	
1134	4.28	130	5.1	0.018	6.40		21.3	174	12	<u> </u>	
1144	4.28	130	43.9 "	and the second second	6.44		21.0	179	12	- u	
1148	4.28	130	4.7	0.079	6.40		16.2	183	12	y	
1156	4.28	130	4.7	0.079	4.40		17.2	184	12	и	
EQUIPME	NT DOCUMEN	TATION	li.		No.			cont		n next page	
	DE PUMP	er boat.v	TYPE C	OF TUBING GH DENSITY POLYI	ETHYLENE		F PUMP MATER	() () () () () () () () () ()		F BLADDER MATERIAL	
	RISTALTIC	OTHER		HER LAPE		ОТН		-		HER	
ANALYTIC	CAL PARAMET	ERS	112 ME	THOD	PDEC	SERVATION	VOLUME	SAMP	F	ows en 1 miles es	
ANALY	SIS		NU NU			ETHOD	REQUIRED			AMPLE BOTTLE ID LETTERS	
		,		10		ū.				e 70 m	
Sec	page 2	-12	194							Y	
										· F	
	118.00	er sakerti		a contragada. Ana di a alta aca							
				and the second region							
								Carlo d	HC J INS	$m:=\{\phi()=-\lambda_i\cdot g_i\}_{g_i}$	
PURGE O	BSERVATIONS				- v		10000	or La	n undi	d 2' builer	
PURGE WA		(No)	M 32-14,		^	NO JULE	01 01 01				
NOTES:		<u> </u>	1 4 1		natal i						
	A.	0	110-		LO	W FLOV	W GROU	NDWA	TER D	ATA RECORD	
SIGNATUR	E:_ While	11 1.de	ye _	L. CANADOPPARA						OJECT PLAN	
1.0	A Po	on tokonda Millio Breda	KHUBBA Y	HEVISHTOM HEATIG	17.725(1)	0.04f32T73080473	00-400 101 1150 117 1176	0.000 (0.		4th RRC 2004	
CHECKED	BY:		an interpretation to							— MACTEC, Inc.	

ROJECT	Lincol Mw-	n, RI	94th pre	GROUNDWA FIELD SAM	PLE NUMBE	R ZI	22-6	ws Mi	JOB NU	EVENT NO	27/06
	START 1	EN	D is	SAMPLE TI	AMPLETIME 12105 FILE TYPE						
ATER LI ITIAL DE TO WA FINAL DE	TER TOTAL	2,11,1	тс		CASING	PROTECTIV CASING ST (FROM GRO	ICKUP	FT	DIFFER		FT
TO WA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.7	FT (TOR) PRESS FT TO PUI	CONTRACTOR OF THE PROPERTY OF		AMBIENT A PID WELL MOUTH	IR L	PPM PPM	WELL II	NTERGRITY: RITY: YES	NO N/A
TOTAL V	GED .		REFILL GAL SETTIN			DISCHARGI SETTING			CAS LOCH COLL	ING	
URGE D		PURGE RATE (ml/m)	TEMP.	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	PUMP INTAKE DEPTH (II)	COMM	IFNTS
1200	4.28	130	4.7	0.079	639		16:1	185	12	clem	
1205	Collect	Sample	R122-	CONSMINIO	1	by bill	ev – d	ijr. Levd	by pe	ristathic	pump
111	granta te Mari	fra de f		aniero energia Servicio	latics.		V.,	E-rest		1.77	3 20
)										***************************************	
			in the Contract				Harrison 1				
1	T CHAR	10.7									
TYPE C	NT DOCUMENT DE PUMP ADDER RISTALTIC	OTHER	нк	OF TUBING SH DENSITY POLYE HER		STA	F PUMP MATER	300000	TEF	F BLADDER MA	ATERIAL
ANALY		EHS	HIP ME	THOD WATER		RVATION THOD	VOLUME REQUIRED	COLLEC		AMPLE BOTTLE	E IO LETTERS
VOC	il Lead		·6	260	He	1 + 4°C	. fomi	- Y		RIZZ-	4WSHW
h	olved Lea	1 8	60	10		NOZ	250 "		(, ,
90(5)			u venuun adee	sometiggation			250		(11	
											1.
RGE OE RGE WA' NTAINER		NO	NA	a X 12 St. New York and a second again		the state of	eng ense.				
. 25.					LOW			NIDVA/A		ATA REC	

037c.xls

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLIN	G		JOB NU	MBER	
PROJECT	94Th RI	RE Line	In, Ri	FIELD SAM	PLE NUMBER	12	EZZ -	GW51	weo	V EVENT NO.	
SITE ID	MW-	8			SITE TYPE	: [DATE 1-30.	06
YTIVITÇ	START 08	24 END	8:40	SAMPLE TI	ме	0840	3		FILE	TYPE	
WATER LE	EVEL / PUMP S	ETTINGS		REMENT POINT OF WELL RISER		ROTECTIV	E .		CASING	S/WELL	
INITIAL DEI TO WAT		.45	FT HISTORI	OF PROTECTIVE	CASING C	CASING STI	CKUP	8 _{FT}	DIFFER		FT
FINAL DEF	2.00	.30	WELL DI		FT A	PID AMBIENT AI	R O	РРМ	DIAMET	TER Z	IN
SCREEN LI	ENGTH \	O Comme				NOUTH	0	РРМ	INTEGR	RITY: YES NO	N/A
TOTAL V PURO (purge v	GED .		SETTING	es) x 0.00026 gal/m	s	DISCHARGE SETTING			COLL	KED 💢 🗌	= -
PURGE D	E 7			SPECIFIC	1				PUMP	1	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	INTAKE DEPTH (ft)	COMMENTS	<u>š</u>
0838	3.45		8.9	0.281	6.04		163	29	13	bailer	
0840	Collect	Sample	- RIZ	2 - GWSN	W801	-					
											- 00
!											
i	 									10 julio 10	
TYPE (INT DOCUMEN OF PUMP LADDER ERISTALTIC	TATION OTHER LAIL	Пніс	F TUBING SH DENSITY POLY! HER	ETHYLENE	STA	F PUMP MATER AINLESS STEEL HER		TE	OF BLADDER MATER FLON 'HER	BIAL
-	CAL PARAMET			THOD	PRESE	RVATION	VOLUME	SAMF	n F		
ANAL	<u>YSIS</u>			MBER		THOD	REQUIRED			SAMPLE BOTTLE ID	LETTERS
Vo	C		82	260	HC	1+40	c to	L Y		RI22- G	WS HW &
i i	al Lead		60	10	H	NU-3	250	rul !	1	4	
Duss	solved L	ead			4	NO.3	250	3mL	Y	W	
PURGE OF PURGE WE CONTAINED NOTES:	CONTRACTOR OF THE PARTY OF THE	600 SE	No sh	ten or o	-		has or 1/27 fo			port	
		be of es			LO				NCE PI	ATA RECOROJECT PL	-AN
CHECKED) BY:	Sem	theyes							— MACTEC	

FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER S	SAMPLIN	G H	HTA.	JOB NU	JMBER
PROJECT	99	th REC.	Lincoln, RI	FIELD SAM	IPLE NUMB	ER]	EVENT NO.
SITE ID	Mw-	5 511	e 04		SITE TY	PE	100000	-1 -11-1]	DATE 4.27.06
;TIVITY	START 0	735 EN	0 0830	SAMPLE TI	IME	N.A			FILE	TYPE
WATER LE INITIAL DEF TO WAT FINAL DEF TO WAT SCREEN LE TOTAL V PURG	PTH PER COLUMN (milliliters	LG Lry 10	MEASU FT TO FT HISTOR WELL C FT (TOR) PRESS: TO PUM REFILL GAL SETTIN ne duration (minu TEMP. (+/- deg. c) B	P OF WELL RISER P OF PROTECTIVE 1.8 + 16. BICAL DEPTH 17.8	CASING 0=17.8 FT PSI	PROTECTIVE CASING STI (FROM GROUP) FID AMBIENT AI MOUTH DISCHARGE SETTING	E CKUP JUND) I		CASING DIFFER WELL II INTEGRAL COCK COLI	TER Z IN NTERGRITY: RITY: YES NO N/A CAP X ING X ING X KED X
TYPE O		TATION	William William	F TUBING	Maga Set		F PUMP MATE	The state of the s		OF BLADDER MATERIAL
X PEI	ADDER RISTALTIC AL PARAMET SIS		🗖 от	THOD WIT NO.	PRES	OTH ERVATION ETHOD	VOLUME REQUIRED	SAMF	LE OT	HER
none			Const.	· · · · · · · · · · · · · · · · · · ·		* = =	* *** ****			safa865zed#1 085 ki istoria
Volu	katand	si - verigi	ers at mor	(1.62) x	en igaetti Skecini	ran - kare	ar gyras ya san	Towns to a service of the service of		
PURGE OB PURGE WA' CONTAINER NOTES: DIGNATURE	AIZED (YES)) NO _	lo nortati			W FLOV	V GROU	INDWA	TER DA	ATA RECORD ROJECT PLAN 4th RRC 2004

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER S	AMPLIN	G		JOB NU	MBER
PROJECT [94Th R	RC Linco	in, Ri	FIELD SAMI	PLE NUMBE	R				EVENT NO.
SITE ID	MW	- 14			SITE TYP	E	* **********	Y		DATE 1-30-06
YTIVIT;	START 091	G END	illo	SAMPLE TI	ME	10	45		FILE	TYPE
INITIAL DEF TO WAT FINAL DEF TO WAT SCREEN LE	TER 3.	28	Тог	JRE IÁ.	CASING , 1'= 14.1	PROTECTIVICASING STICE (FROM GROUPID AMBIENT AIL PID WELL MOUTH	UND) 2	PPM PPM	WELL INTEGE	NTERGRITY: RITY: YES NO N/A CAP X
TOTAL V	SED -		REFILL SAL SETTIN	G (tes) x 0.00026 gal/m		DISCHARGE SETTING			CASI LOCK COLL	KED
PURGE DA		per minute) x tin	ne duration (minu	SPECIFIC	ammer)				PUMP	105
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	INTAKE DEPTH (ft)	COMMENTS
0938		100	(11 dog of	(1100 011)	(09)	(1.3-7				Begin Pergina
0941	3,45			***************************************			14.4			clear
0942	itock.	ir ito	Hor.ba					•		
0945	3.52	120	8.1	0.483	6.52		91.9	-68	9	clearly
0950	3.54	120	7.6	0.474	6.53	-	62.7	-82	9	и
0955	3.54	1200	8.9	0.443	6.50		51.8	-91	9	chearing
1000	3.54	اله ال	7.5	0.450	6.49		15.2	-93	9	clear
1005	3.54	150	7.4	0.436	6.49		1.82	-95	9	clear
1010	3.56	140	7-2	0.430	6.40	-	2.71	-96	9	clear
tois	3.60	140	1857.5	0.405	6.49	-	2.31	-98	9	cheer
1020	3-60	140	7.6	0.408	6.49		13.2	-99	9	clear
1025	3.60	140	8.1	0.392	6.50		12.0	-100	9	clear
TYPE (NT DOCUMEN DE PUMP ADDER ERISTALTIC CAL PARAMET	purging only		OF TUBING OF TUBING OF TUBING OF TUBING	ETHYLENE	STA	F PUMP MATE AINLESS STEE HER	174	TE	DF BLADDER MATERIAL FLON THER
ANALY		iens		THOD		ERVATION ETHOD	VOLUME REQUIRE	SAME COLLE		SAMPLE BOTTLE ID LETTERS
VOL					-	i and 4°	C 1	,	(RIZZ - GWSMWIH
(6) 22	al Lead		601				2501	1) 11 - 6	` {	11
	olved Le	ead		0 15	200	NO3	250		Υ	u
	man e e e				-					
PURGE OF PURGE W		S	bailer	obtained	2' 50		petrol	خاس د	dor p	product, however, oresent
NOTES:			V.			* 5	heen u	side	in PV	rge bocket
CHECKER		he for	Chap		LO	W FLO	W GRO	NDM	NCE P	ROJECT PLAN 94th RRC 2004
CHECKEL	٠٠١		- ay							— MACTEC, Inc.

FIELD D	ATA REC	ORD - LO	W FLOW	GROUNDW	ATER S	AMPLIN	IG		JOB NU	IMBER	
PROJECT	94th 1	ere Line	oin, Ri	FIELD SAM	PLE NUMBE	R Z	EZZ-6	Migh	11401	EVENT NO.	
SITE ID	Mw - 1	4 (contin	ved)		SITE TY	PE				DATE 1/30/00	0
JIVITY S	TART	END		SAMPLE TI	ME _	10:4	5		FILE	TYPE	
WATER LEV	/EL / PUMP S	Later to a more a service of the	MEASU	REMENT POINT					2.72		
INITIAL DEPT TO WATE				P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING ST	ICKUP	FT	DIFFER	ENCE F	
FINAL DEPT TO WATE	R L		WELL D (TOR)		FT	PID AMBIENT A	IR	PPM	WELL II	NTERGRITY:	IN
SCREEN LEN	NGTH		FT TO PUM	W. C. C. C. C. C. C. C. C. C. C. C. C. C.	PSI	PID WELL MOUTH		РРМ	INTEGF CAS	CAP	/A
TOTAL VO PURGE (purge vo	ED		REFILL SAL SETTIN te duration (minu	G tes) x 0.00026 gal/m	nilliliter)	DISCHARG SETTING	E		COL	KED	=
PURGE DA				SPECIFIC	- 30 T				PUMP		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	INTAKE DEPTH (ft)	COMMENTS	
1030	3.60	140	8-3	0.387	6.50	9.72	8.37	-101	9		
1035	3.61	140	8.7	0.379	6.51	9.34	8.07	-102	9		
1040	3.61	140	9.0	0.378	6.52	9.02	8,00	1-102	1		
1045	Collect	Sample	RIZZ	- GWS MWI	401						\dashv
											_
								1			
TYPE OF	IT DOCUMEN FPUMP ADDER RISTALTIC	_	н	DF TUBING GH DENSITY POLY HER	ETHYLENE	sr	OF PUMP MATE AINLESS STEE		TE	OF BLADDER MATERIAL FLON THER	
	AL PARAMET			HEH			IHEH			inen	_
ANALYS				THOD MBER		SERVATION METHOD	VOLUME REQUIRE			SAMPLE BOTTLE ID LETT	ERS
Sed	page 1	12									
PURGE OF PURGE WA CONTAINER							1121001			_	
NOTES:		2									
SIGNATURE	1	Was J. 4	Her	-	LC		SCHOOL DESCRIPTIONS		NCE P	OATA RECORD ROJECT PLAN 94th RRC 2004	4
CHECKED	ву:	Dann	Chagle	en						— MACTEC, Inc	7.35 7.35

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER S	AMI	PLIN	IG	See State	JOB NU	MBER
PROJECT	94 12	Bey Lin	neeln. [FIELD SAM	PLE NUMBE	R	Pr	22 · G	WEM	weel	EVENT NO.
SITE ID	MW-	2			SITE TYP	E [DATE 1/30/00
TIVITY	START 8:	35 END	9:19	SAMPLE TI	SAMPLE TIME 9:19					FILE	TYPE
WATER LE	EVEL / PUMP S	ETTINGS		REMENT POINT						212112	
INITIAL DEI	TH 3	38		P OF WELL RISER P OF PROTECTIVE	CASING	CASI		ICKUP		DIFFER	ENCE FT
FINAL DE	20 TO SOLD	. 38	HISTOF				M GRO	JOND) [FT	WELL	ER 2 IN
TO WAT	0.00 M	.93	FT (TOR)	EPTH 21	FT	PID AMBI	ENT A	IR N/A	РРМ	DIAMET	
SCREEN LI	ENGTH		PRESS	1 1 1 / 4	200	PID V		N/A	DDM	INTEGR	Confidence of the control of the con
TOTAL .	, L		FT TO PUN	, , , , , , , , , , , , , , , , , , ,	PSI	MOU			РРМ	CASI	
	360 -		REFILL SETTIN	G [77/A		SETT	HARG ING	E		COLL	
	(purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) PURGE DATA SPECIFIC PUMP										
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	100	00 g/L)	TURBIDITY (ntu)	REDOX (+/- mv)	INTAKE DEPTH (ft)	COMMENTS
8:37	5.44	125	8.4	0.255	6.06	100	24	7/25 7/27 7/27	236	16	COMMENTS
8:47	6.07	100	7.6	0.234	6.49		707		227	,	
8:57	6.46	100	9.5	0.228	6.50			26.2	219		
9:03	6.65	100	8.1	0.227	6.51			2108	209	-	
	6.88	115	7.7	0.228	6.54			2407			
9:14		115	8.2	0 : 225	6.55				-		
9:19	Sam	פיפ									
(c		14									
							,			,	
						V				¥	
	NT DOCUMEN OF PUMP	TATION	TYPE (OF TUBING		ā	TYPE C	OF PUMP MATE	RIAL	TYPE C	OF BLADDER MATERIAL
В	ADDER	48	П н	GH DENSITY POLY	ETHYLENE	Ī	=	AINLESS STEE	L		FLON
	ERISTALTIC			THER		L	01	HER		от	HER
ANALYTI	CAL PARAME	IERS		THOD	0.0100-007:07	ERVA	TION	VOLUME	SAMF		SAMPLE BOTTLE ID LETTERS
NO.			NC	INIOCH		+21	0.0	4740		-	CAMIFEE BOTTLE ID LETTENS
1	mil Ne				TE	100	2	1 × 250	_ Di		
D	ss me	rals			1-	No	3	1 × 250	mL X		
					H	No	3	1			
_		90.000 VOLE									
_	01705-6	W5 :		r was						n or	odor
			new	D-W W	uas ·	701	1EC	97 H	. 33		-
	1 m	ell vol	opne	= 0 - 180	erest	N	Z	. 67 go	25		
PURGE	BSERVATION	IS.			*************	-					
PURGE W	ATER	_			<u> </u>						
NOTES:	ERIZED S. YE	S 1 NO _			-						
		J				147		W CDO!	INIDIA	TED P	ATA RECORD
SIGNATUR	RE:_ (4)	com	Changer-	Lamentaria.	LU	0.5126				MANAGEMENT - DAG	ROJECT PLAN
		1	Chazer			8	<u>.</u>	ALIII MO	JOUIN		94th RRC 2004
CHECKED	ВУ:	and	Chayer	·							- MACTEC, Inc

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER S	AMPLIN	G		JOB NU	MBER
PROJECT	94	PRC L	incoln.	FIELD SAM	PLE NUMBE	R PI	22 - GV	15 MV	11501	EVENT NO.
SITE ID	Mw-	5			SITE TYP	PE				DATE 1/30/00
TIVITY [START 10:	20 END	11:11	SAMPLE TI	ME	11 :41			FILE 1	ТҮРЕ
WATER LE	VEL / PUMP S	ETTINGS	- 10 to 10 t	REMENT POINT		AND THE STREET, NAME OF THE			200202020344	
INITIAL DEF		71 -	TO!	OF WELL RISER OF PROTECTIVE	CASING	PROTECTIV CASING STI (FROM GRO	CKUP	FT	CASING	
FINAL DEF	100	44	HISTOR WELL D	The second secon	2	PID	N/A	00.1	WELL DIAMET	ER IN
TO WAT		· 1	FT (TOR)		7 FT	AMBIENT AI	н [PPM	WELL IN	NTERGRITY:
SCREEN LE	NGTH		FT TO PUM	1 . 1 / //	PSI	PID WELL MOUTH	2/2	РРМ	INTEGR C CASI	CAP <u>¥</u>
TOTAL V PURG	SED 🥒 🐪		REFILL SETTIN	G tes) x 0.00026 gal/m		DISCHARGE SETTING	N/A		LOCK	(ED
PURGE DA	The state of the s	per rimitate) x min		SPECIFIC				200	PUMP	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	INTAKE DEPTH (ft)	COMMENTS
10:31	2.71	125	3.5	0-124	6.53	1.03	121	128	12	
10:41	2.71,	125	2.9	0.123	6.41		57.0	128	12	
10:51	2.76	125	2.8	0.132	6.41	-	20.7	152		
11:01	2.11	125	2.9	0-121		0.43	6.68	157		
11:06	2.77	125	2.9	0 - 120	6,73	0.42	4.68	123	-	
13:11	Scampl	e .			-					
									1/	
									A	
TYPE C	NT DOCUMEN OF PUMP ADDER			OF TUBING GH DENSITY POLY	ETHYLENE	ST	F PUMP MATE AINLESS STEE			DE BLADDER MATERIAL
	ERISTALTIC			THER			HER			THER
	CAL PARAME	rers		THOD		SERVATION	VOLUME REQUIRED			SAMPLE BOTTLE ID LETTERS
ANAL			NU	MBER	100	HC_1	HEQUIHEL	-		SAMPLE BOTTLE ID LETTENS
Voc		1					1×25			
1	al leve						1×2			
יוע	ss mer	cus								
			ñ							2
1	Jore :	Bailed	ware	befor	e pu	rge 1	reed n	OTICE	cot 10	sheen+
		wor.		vell vo)						j., 1
PURGE W	Section 2016 April 1997	<u>2011</u> 3						H-1		
NOTES:								Mark		ATA DECODE
		and ,			LC				NCE P	DATA RECORD ROJECT PLAN 94th RRC 2004
CHECKE) BY:	Dend	Chen	200_						— MACTEC, Inc. —

FIELD	DATA	RE	CORD	-LOV	V FLOW	GRO	NONDO	ATER S	SAMPL	NG ·	•		JOB N	UMBER 3	6180481	23
PROJECT	94	TH K	RC L	i cola	RI		FIELD SAI	MPLE NUME	BER	MW-	200]	EVEN	IT NO.	L
SITE ID	S	ite	04		3.00			SITE	PE	-]	DATE	5.31.0	7
YTIVITS	START	10	10	END	1125	15	SAMPLE T	IME	1	20			FILE	TYPE		
WATER LE	тн Г		ETTINGS	FT	7 = 7	OP OF W	IT POINT ELL RISER ROTECTIVE	CASING	PROTECT CASING S (FROM GI	TICKUP		• FI	DIFFE	G/WELL RENCE		FT
FINAL DEP	тн [5	.59	FT		RICAL DEPTH	20	FT.	PID AMBIENT	AIR	0.0	PPM	DIAME	TER	ı	IN
CREEN LE	_		10	FT	PRESS			PSI	PID WELL		2.7	PPM	WELL	INTERGRIT RITY: YES CAP 1		N/A
TOTAL VO	ED	Niliters :	Z. per minute)	GAL	REFILL	iG.	00026 gaVn		DISCHARE SETTING	SE _	-	*		KED 📉	<u> </u>	\equiv
URGE DA	TA DEPTH WATER		PURGE RATE (m)		TEMP. +/- deg. c)	COND	ECIFIC UCTANCE	pH (units)	DO:	TURB	O-STORY -	REDOX (+/- mv)	PUMP INTAKE DEPTH (ft)	cc	OMMENTS	
1015		3-41	i I	aplin												
1120	0	1/4	ct.	50	imple			KIZZ	- Mh	520	001	1				
					7/4						-	_				
							15		*)						•	
				_ _			-		G-C-C-				·			
					بالسفه							- 3				
		_			_						-			-		_
		_														P. 10
`							_									
•						1	14 94								-	
. V																
TYPE OF BLAI	PUMP		OTHER 6	iler	HIG	F TUBIN SH DENS HER	G ITY POLYE	THYLENE	☐ ST	PUMP AINLESS HER			TE	F BLADDEF LON HER	A MATERIAL	
ALYTICA					MET	HOD.		PRESE	RVATION	VOL	UME	SAMPL	E :	1 12 12 12 13	*	
VOC.		. :		3 3	NUM	260	*** *** ***	ME	THOD .	•	UME VIBED K 40	COLLECT	ED SA	RI22	- MW2	00
	•	36			48 A	W 1 -	s ×	•	**				. 17.	T C C - N	INS 20D	0]
22		**			2.	2	<u>s</u>					3			2 5 5	
•			2	:00				**				= %	. 0.	-2		
				8.500					- 19				9. g	9		
					49	+								. 4		
(4			*	9.ª	×.	10 -		V 2	- 21		: ::		# # # # #	70	n ^{eg}	23
				11.0			-1			72						•
RGE OBS RGE WATE RTAINERIZ	В	ONS YES).	NO -	No	odor	04	. shee	en ·	ě	*			***	* **	25 10	
TES:	1	4	4	ju man	2 %			80	141		e ::			. × .		
NATURE:_	A	Jacq	1 ex	le_	-	- 7	74) 15	LOW					E PRO	OJECT	CORD	
ECKED BY:		•					£3		3x			6.	94	th RR		
-		-					×							- MAC	TEC, Inc	

APPENDIX F FIELD DATA RECORDS – LOW-FLOW GROUNDWATER SAMPLING

FIELD D	ATA REC	CORD - LO	W FLOW	GROUNDW	ATER S	AMPLIN	1G		_		
PROJECT	AMSA 6810	G) Lincoln, Rt		FIELD S	AMPLE ID	ζT 2 ? ·	- 645/11	WIF	LOS NU	MBER 361804B	123.02
LOCATION ID	Mh	1-1		TRIP BL	.ank [TB-	1			FVENTNO	4-
AGT://FY	START		END / 34	Fr SAMPU	e inse	7 .	7			DATE 🦸 🗀 -	
	VEL / PUMP S	SETTINGS		EQUINT PO NT PICEWELL RISER		PROTECTION			CASING	3/WELL 4-	
TO WATE	Р 7.	63		PICF PROTECTIVE		CASING ST & ROM GRO		Ieet	O:FFER WELL		*81:(l)
FINAL DEPT TO WATE		.46 -	v/SLLC on: (TOR)		7 <u>(eg</u>	PID AMBIENT A	IR 6.0	2 рату	DIAMET	TER L	inches
SCREEN LE/	IG7H	10	PRESSI 001 CT (00)		şəsi	PID WELL MOUTH	0,	2 2000	INTEGR	RITY YES NO CAP ≱	
TOTAL VO PURGE	D 1 /-	47 galle	PREFER		, tilines)	DISCHARG SETTING	F		COLL	NG <u>3.</u>	<u></u>
PURGE DA	·-·	per tare ore; x (iii)	og og sir in innin	SPECIFIC				· -	PUMP		
TNE	DEPTHTO	PURGE BATE (<u>ml/m n</u>)	TEMP. (C1)	CONDUCTIVITY (mS/cm)	pH (unds)	្រាស្ត្រ (DISS (DZ) ក្រា <u>ង</u> ្រា	TURBIDITY (NTU)	REDOX (+/- mV)	"NTAKE DEPTH (ft)	COMMEN.	TS
1241	Bigin	Parging									
1295	4.15	1800	17.7	0.47	5.2 3	X300	8.1.4	227			•
	<u> 2.72 </u> 3.73	145	16. 13	0.1.7	5 24	-	5.76	202		<u> </u> 	_
	<u>3 - 7 - 7</u> 8 - 4 - 1	14.	16 57	- <u>*</u> -24-54- 	5)0	_	3.23	27 57 2	<u> </u>		
· · · · · · · · · · · · · · · · · · ·	4.77	190	1600	0007	3 72	2.75	401	281			
777	7.47	140	16.04	0.157	1.46	3.76	4.77	0.7			
	8.46	1000	16.7 1	C-132	5.97	410	7.13	261			
1522	<u> お, せく</u>	11.	16 45	2.637	1.50	427	4.07	<u>: -7 :</u>	ļ -		
		1			[-			
 			<u> </u>		 	 -			<u>!</u>		 -
			<u></u>		1	 	<u> </u>	1	<u></u> -		
					1	1	<u> </u>	1			
	IT DOCUMEN	TATION	·	•			1v	PE OF TUB	NG		
TYPE OF		SCHALK BLADD!	er 🗓] OTHER PER:S	TALTIC		Ë	-	1811 Y POLY:	ETHYLENE	
		MARŞCHALK B	LACCER	·				OTHER.			
}	AL PARAME			THOD		SERVATION				SAMPLE BOTTLE!!	оттар\$
CONTRO	_		<u> N.</u>	<u>N/3ER</u> 82608		<u>167HOD</u> CI74 C°	<u>REQU'R</u> EC 3 X 40 m.L	ים ג <u>סטופ</u> ו ג <u>ל</u> ם			J CE <u>(10K3</u>
_	s 5 mL Purge		82003 v	//MTBE and TICs	н	CI / 4 G*	3 X 40 mL		j _	//	
· =		ficipes only)		8091	4 (2 X 1 L AG		<u> </u>	/	
· =		RIDE / ALKALINIT	-	874 5 / 326 2 / 310.1 874 5 / 310 1		c. c.	1x1LP 1x1LP	<u> </u>			
i ==	FATE / ALKALI - NO _o	PSGLT		174 57 310 1 3 353 2		ರ ,ಶಲ್ಯಣ pH <2		.r <u>'</u>	1 =		
100			US	SPA 415 1	H,	50, to pH <	z 1 X 250 mi	LAG 🚞	j _		
. □NAN	VGANESE - FIE	LD FILTERED	SV	V846 6030	H	NO- to pH <2	1 X 500 ml	_P] _		
MET	HANE / ETHA	NE : ETHYLENE	R\$	K 175		Cl / 4 C'	3 X 40 mL	_] _		_ ·· -
	RCUS IRON			ELD METHOD							
1 ==	ROGEN SUUF ROSVERIOVYZ			ELD METHOD MODIFIED WINKLEI		KESUUT = () KESUUT =					
-	SOLVED CXYO		20 NET 110,524	ACCEPTED WINKLES	<u> </u>		N NOTES	-			
PURGE WA	TER /) –				200000					
CONTAINER NOTES:	RIZED /FE	, CK		•	——						
MOTES:		Δ	0								
SIGNATURE	<u> </u>	(0)	1 : :	·							
San adam da								944	CTEC, inc		

FIELD D	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER S.	AMPLIN	IG		_	<u> </u>	
PROJECT	AMSA 68(0	3) Lincoln, Rf		FIELD S	AMPULIO [П:03 ИЛ,	NBER36180481	123.02
; DCAF ON IS	MW	7 7		TR.P ≘L	ank [<u></u>			_}	EVENT NO	03
4CTIVITY	START	1417	IND 153	∃ D SAMENE	E T!!.15] :	DATE 6/45	107
	VEL / PUMP S		MEASUS	RESERVE POINT							
INITIAL DEPT TO WATE	тн (— —	. ^		FOR WELL RISER FOR PROTECTIVE	CASING	PROTECTIV CASING STI (FROM GRC	CKUP	4003	CASING DIFFERI	ENCE	(sel
FINAL DEPT	1 ://	\$_ } t	H rsToR Well b	_		PIO AMBIÉNT AI	R CC	2 05551	WELU DIAMET	TER 7	inghes
TOWAR) ′ [(*OR) (*OR)				.R [2, C	TEC.	WELLIN INTEGR	VTERGRITY: RITY YES NO) N·A
SCREENIE	NGTH /	¢ ⁻¹	eet 10 Pur			HTUGM HTUGM	1.5-0	ррпу		AP X	[
TOTAL VO	FD 47	+,45 gallo	REF.LL	G (cs) x 0.00026 ga: m	1	DISCHARG: SETTING	·		COLL	ŒOX	= =
PURGE DA	_	per minus pant	ie duralion (ariilo	SPECIFIC					PUMP		
TINE	DCPTHTO	PURGE RATE (#15min)	TEMP (C*)	CONDUCTIVITY (mS/cm)	ρΗ (units)	DISS, 02 [(mg/L)	TURBIOITY]	REDOX (+/- m//)	:NTAK€ DEPTH (ft)	<u>COMMEN</u>	TS
1717	Be41	Pulana	<u> </u>								
1428	510g 10		cuuse f	low rute	15 %	+ 10	750 Feers	t. C	harno	Silien	- Fub.
	to 1 8.)	Fer (nt	Lignet	٤/.						<u></u>	
14%1	Kestal 1	fump	, 	- 7.3 7.	<u> </u>			- <u> </u>		<u>-</u>	
14 35	8.19	160	16 33	0363	5.94	1000	101	111	_ ,		
1440	3.50	130	16,10	C. 36C_	6.04	CCC	883	108		 -	
1445	8062	90	1704	0.357	6.14	000	717	188	-	· -	
1450	8,79 Well	90	16 45	<u>۲۲. ۲۲۲</u> د مام	1	 	and 11	· .	600	borging!	Here
1452	<u> </u>	- 		حر مدندع ر الخفري	Τ'	12/4	1.,		7 €		72-21- 20 7
1455	1/1/20	500	14.61	0.362	6.27	800	5 7 17 50	079		•	
17 77 BOD	11.35	400	14.15	6368	6.35	600	167	55		1	
1510	12.20	450	13.55	0353	€ 5€	0.00	32.9	74	Ì		
1515	1305	400	13.09	0.353	6.51	000	75.0	73		{	
EQUIPME	NT DOCUMEN	RTATION	<u> </u>			1	•	<u>PE OF TUB:</u>	NG.		
	<u>DE PUMP</u> DIOATEIO HARA	SCHALK BLAOD	IX	OTHER PERIS	TALTIC.			HIGH DEN		ETHYLENE	
I 📛 '		MARSCHALK 5	,	, 511 EK _1 EK 5			Ė	OTHER_			
	AL PARAME					- FRANCH	VOLUME	SAME) E		
CONTR	OL NUMBER_			THOD MBER		SERVATION ISTHOD	<u>REQUIRE</u>			<u>SAMPLE BOTTLE I</u>	
Ç∑ivo				82608		01/4 C°	3 X 40 mL]		
	Cs 5 mL Purga e≚:cince /pee	(TICIDES ONLY)		// MTBE and TiCs 8081	4 (0174 Of 01	3 X 40 mL 2 X 1 L AG	. :	_		
1		RIDE / ALKALINI		74 5 / 325 2 / 310 1		C°	1 x 1 L P		_		
	LFATE / AUKAL	INTY		74 5 / 310 1		C°	1 x 1 L P 2 1 X 500 ml] -		
	ly-NU _y C			333 2 SEPA 415 1		,5O ₄ to pH ≤ ₅ SO ₄ to pH ≤			<u> </u>		
-		ELD FILTERED		V846 5010		NO ₂ to pH <2		. p	Ī _		
	THANE (ECHA	NE / ETHYLENS	RS	6K 175	R	CI / 4 C*	3 X 40 mL		j	//_	
	RROUS IRON			CORTBU CLE							
. =	TOROGEN SULF SSCLVED OXY			ELD METHOD MODIFIED WINKLE		:ESULT =					
	BSERVATION					LOCATIO	ON NOTES				
PURGE W	ATER /	<u> </u>									
NOTES:	RIZED YES	s, NO _	· · · · · <u>-</u>								
140125		A	1								
	17-		1/1-								
SIGNATUR	RE			·							
Checked 9	lv'									8/40	CTEC. No

FIELD [DATA RE	CORD - LC	W FLOW	GROUNDW	ATER S	AMPLI	NG.				П
PROJEC*	AMSA 68(G) Lincoln, RI		F'ELD S	SAUPLE IO		·		JOS NJ	1\1BER 3618048123.02	
LOCATION	o Mark	1-2		TRPB:	LANK					EVENTING [2"]	
ACTIVITY	START	1417	END /5	2.5 SAME.	S TIME		<u>-</u>		_	DATE 6/25/#7	
WATERLE	VEL / PUMP	SETTINGS		REMENT POINT				<u> </u>			_
NETIAL DEP		7.10	to	PIOR WELL RISER PIOR PROTECTIVE	CASING	PROTECTIVE CASING ST	ickup		DIFFER	BYWELL	
TAW CE		/ · · · · · · · · · · · · · · · · · · ·	<u>'oet </u> ————————————————————————————————————			(FROM GR)	DCND) [feet)	WELL	7 inchas	
FINAL GEP TO WAT	ER in	1.55	MELL :: feet (TOR)	DEPTH.	1997	PID AMBENT A	R D	<u>ຸ ກະກາ</u>	DIAME1	indies	
SCREENLE	NGTH	10	PRESS			PID WELL	PE /	<u>.</u> 5-	INTEGR	NTERGRITY RITY: YES NO N/A	
**************************************	, -		iggs} YO⊃Us	′ -		MOUTH		ppany	CAS	ING AL	
TOYAL VO	ED '	7.75 gal	REFILL ons SETT:N		<u> </u>	DISCHARG SETTING	•		COLL		
PURGE DA		(be, um/res) x m	ne duralion (imni	itesiik 0.00026 galif SPECIFIC	s-linaec)				50 NS		_
TIME	DEPTHITO WATER (ft)	PURGE RATE (mL/min)	TEMP (C°)	CONDUCT:V:TY (rs:Sigm)	pH (upda)	0155 O2 (mgll)	TURBIDITY (N.T.J.)	REDOX 1	INTAKE DEPTH (ft)	COMMENTS	
1500	17 1K	400	13.47	1.361	652	0,00	15-1	43			
1523	Stop	general	to cle	7	F. F.	091	DTW:	•			_
	well 1	1/15 / part	tomor	fulges	11/4	W://	(Bsur	2 4	First	رع	_
	W / / /		1 52.01		}						-
	•				1 .						
		1									_
					<u> </u>	<u> </u>					_
						}	<u> </u> 				_
	··										
										-	
-								!		<u> </u>	
EQUIPMEN	NT DOCUMEN	TATION		İ				<u> </u>		<u> </u>	_
	<u>SEPUMP</u>		17	1			<u>TY</u>	PE OF TUB!	_		
I =		SCHAUK BLADDE MARSCHAUK B		OTHER _ PERIS	TALTIC] OTHER	SITY POLYS	EIHYLENE	
ANALYTIC	AL PARAME	TERS	<u>.</u>	тноэ	ones	ERVATION	VOLUME	SALIP			_
l	OL NUMBER_			MBER	<u>M</u>	ETHOD	<u>REQUIRED</u>		TED S	<u>IAMPLE ROTTLE</u> IDLETTER	Ş
(X) voc	us Čs 5 mL Purgo		8260B w	6200B / MTBE and TIQs		37.4 C° 37.4 C°	3 X 40 mL 3 X 40 mL				
\mathbf{I}		TICIDES ONLY)		8051	4 0		2 X 1 L AG				
\mathbf{I}	.FATE / ALKALI	8DE JALKALINIT INITY		74 5 / 325,2 / 3 10 1 . 74 5 / 31 0 ,1	40		1x1LP 1x1LP	<u> </u>	¦ _		
	· NQ ₂		USEPA			SO ₄ to pH KZ		_	_		
		LD FILTERED		E ^o A 415 1		504 to pH <2		<u></u>] —		
		NE / FTHYLENE		'846 6010 K 175		1O ₇ to pH ≺2 3174 G²	1 X 800 mt. 3 X 40 mL	· '] 1	, , , , , , , , , , , , , , , , ,	
-	RROUS IRON			COHTEM OL		ESULΥ =					
\mathbf{I}	DROGEN SULF			: DIME THOO		ESULT =					
\vdash	SOLVED OXYO BSERVATION		ED 201000-7	IGDIFIED WINKLER	· · · · · · ·	LOCATIO	N MOTES		 .		
PURGE WA	ROS WATER										
CONTAINER NOTES:	KIZED -YES	NO									
]			10								
SIGNATURS	£ 12	-6-	da								
				(\						
Chacked ifly										MACF8, 0, 5nd	

FIELD I	DATA RE	CORD - LO	W FLOW	GROUNDW	ATER S	AMPLI	NG			
PROJECT	AMSA 680	G) Lincoln, Ri		FIELD S	SAMPLEID	£ 7 2	< - G-W3	MW;	22 JOB NO	UKSER 3618048123 02
LOCATION I	ID 7:4 t.	· 2		TRIPS	LANK	TB	- 1			EVENTINO [7]
ACTIVITY	START (808	ENO CH	SAMPI	F Young	19.	j.			DATE 1/26/17
WATER LE	EVEL / PUMP	SETTINGS		REMENT POINT PIOS WELL RISER		PROTECTA				S/WELL []
INITIAL DEP TO WAT		37	feel 10	PIOR FROTECTIVE	CASING	CASING ST (FROM GRO	TCKU.P	leet	DIFFER	
FINAL DEP TO WAT		3.65	######################################	ертн 20 -7	C foor	PID AMBIENT A	IR C. C	D bbus		
SOREEN LE	ENGTH	i0	PRESS feet IDPUL		ps	PID WELL MOUTH	1,5	- pomv _i	ಸಗ€ಡ? 0	AP <u>* </u>
TOTAL VI PURG (purgely	ED //		REFILL ens SELLAN ne durakon (minu	G ites) x 0.00026 galin	n Hiliter)	DISCHARG SETTING	E		CASI LOCK COLL	(f) <u> </u>
PURGE DA		l puece	TEANS 1	SPECIFIC	يا	l pura ce l	LIUDDIE	L DEBOY	POMP	
TIME	DEPTH TO WATER (%)	PURGE RATE (mL'min)	TEMP (C1)	CONDUCTIVITY 	pH (units)	DISS, C2 (mg/L)	TURBIDITY (NTU)	REDOX (+/- mV)	INTAKE DEPTH (f:)	COMMENTS
6868	Bayon	Parging								
0 × 15	8-10	150	16 97	0.364	645	3.01		<u> 75</u>		
6850		110	17.1%	5 537	676	278	8.79	81		
	8.80	110	17.50	_9.50z_	6.47.	15.	9 22	7		
N 8 30		110	17 41	0.300	6.47	2.67	4.81	67		
0835		11.7	17.71	6.7:2	679	777	11.9	67		
1340	4 70	1.150	(7.7)	4.349	643	5.93	10.3	73		
S875		110	17 88	0.745	6.73	4 72	16.7	24		
C850		1000	18 27	C1344	642	7.47	9.20	85		
		116	18.76	6.345	640	7.6	9.06	<u>%</u> ⊀	ļ	
0966	10.63	.110	19.11	0-942	639	4.37	3. 52	93		
├ ──;					<u> </u>					
					!	 			<u></u>	
EQUIPMEN	NT DOCUMEN	FATION			<u> </u>	·	<u> </u>	l		<u> </u>
	F PUMP						TYF	PE OF TUBI	NG.	
ı =		CHALK BLADD!	_	OTHER PERIST	TALTIC		<u>*</u>	HIGH OEN	SITY POLYE	BM3 JYHTE
		MARSCHALK B	LADDER					OTHER_		
l	AL PARAMET			тноэ		ERVATION	VOLUME	SAMP		
CONTR	_		. <u>171</u>	MB5R 8260B		ETHCQ LIAC!	REQUIRED			AMPLE BOTTLE (DILETTERS
_	us Os 5 mt. Purge		8260B w	F2606 / MTBE and TICs		1/4 C*	3 X 40 mL 3 X 40 mL	E E	—	
		TICIDES CNLY)	"	8081	40		2 X 1 L AG		j <u> </u>	
, <u> </u>		DE / ALKALINIT		74 5 / 325.2 / 310 1	40		1 x 1 L P			
	.FATE / ALKALI NO₂	NITY	USEPA 31 USEPA	74 5 / 31 0.) 35% 2	4 C		1 X 1 L P	. =	<u> </u>	
	-			333.2 EPA 415.1		0U410 pH <2 5U410 pH <2] —:-]	.,
! ==	- NGANESE - FIE	LD FILTERED		846 6D10		10 ₀ to pH < 2		·	i –	
ı <u>—</u>		NE / ETHYLENE		K 175		37.4 C°	3 X 40 mL		<u> </u>	<u></u>
_==	ROUS IRON		F.E	LOMETHOD		ESULT =				
	OROGEN SULFI			LO METHICO PODIETED MARKET		ESULT =				
	SOLVED OXYG		rd METHOD - N	ODIFIED WINKLER	RE T	• • • •				
PURGE OF	BSERVATION	<u> </u>				LOCATIO	N NOTES			
CONTAINS		<u> </u>								
NOTES:										
	0	11.	7	0						
S'ONATURS	: <u>/ </u>			_	·-·					
Checkud By							MACTEC, Inc.			

FIELD DATA REC	CORD - LO	W FLOW	GROUNDW	ATER S	AMPLIN	1G					
PIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING ROJECT AMSA 68(G) Lincoln, RI FIELD SAMPLE ID (C. T. 2.4 C. C. C. M. G. N. S. C. L. DOB NUMBER 3538048123 02 OCATION ID (A. C. C. C. C. C. C. C. C. C. C. C. C. C.											
LOCATION ID $M:U-S$			TEIP 31	LANK	13	<u>2.</u>			EVENTING 0	<u> </u>	
ACTIVITY START 1	240 Gall	ნი <u>გგიდ</u>	7 513 1/32 MPL	E T ME	0.15	5]	DATE U 13 G O	517	
WATER LEVEL / PUMP		UEA ≱ υί	REMENT POINT		00.000				· · · · · · · · · · · · · · · · · · ·		
NITIAL DEPTH TO WATER 7	4.) (teet Tor	PIGE WELL RISER PIGE PROFECTIVE	CASING	PROTECTIV CASING ST (FROM GRO	ICKUP		CASING DIFFER		foot	
TINAL DEPTH TO WATER	.89	HISTOR WELLD feet (TCR)	· · · · · · · · · · · · · · · · · · ·) _{feel}	PID AMBIENT A	e Oo	ppniy)	WELL DIAMET	$\mathbb{F}_{R} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$ se	ches	
CODEST STOTAL		<u>resj</u> (rok. □ FRESSI			P.D.WELL			WELL NIEGR	NTERGRITY: RTY: YES NO	N'A	
	/ <i>O</i> ,	toot 70 Puly		ps	MOUTH	4.0	şpm2	1	AP 🔀		
TOTAL VOL PURGED (purge volume (millioters	名 gala sper proute) x tim	REFILL ons SETTING duration (minutes)			DISCHARGI SETTING	E [LOCK COLL			
PURGE DATA		(in the	SPECIFIC			_		PUMP			
O7 H193C	PURGE BATE (ret min)	TEMP (C1)	CONDUCTIVITY (mS/cm)	pH (ubits)	DiSS, O2 (mg/L)	TUREIDITY (NTU)	REDOX (+5 arV)	INTAKE DEPTH (0)	COMMENTS		
1240 Radio	Para y	10.7	Photo 11. 12 (421)	(31.313)	, (mg/E)		(ir v)		www. mainta		
1245 8 50	100	1 1 Sec. 17 4	D : 25 30 1	75 ° 51	:521	-176					
1250 0.30 100 173 0.331 660 4"12 301 -1 10											
1255 796 70 17.2 5.341 661 4.24 274 176											
1366 16.53	40	(7.)	6 उपट	6.65	3.70	747	-179				
1305 11 24	90	16.50	6 350	661	3.42	3550	175				
1310 11:35	૧૦	16.7	Ø.33e	6.8%	350	249	-171				
1319 1294	्र प	167	O Arth	6 %	7275	93	- 114				
1300 J3 c8	410	16.5	0.080	6 91	246	3.35	·· i'5'5				
13:5 13.67	90	16.7	6 270	6.49	2.66	74672	-148				
1330 14.23	(df)	16.4	6,356	દ નપ	2	2-38	-134		<u></u>		
1335 14.87	90	16.5	() 747	6 41.	2,38	&34	-133		I was known or to	archy archy	
1340 675	7.00	(4.0	(-247	6.37	2.3ic	513	-109	<u> </u>			
1345 West	Partick !	dry			<u>L</u> .	<u> </u>	1		1		
EQUIPMENT DOCUMEN TYPE OF PUMP	HAHON		/			ΤY	(PSOF TUBI	NC			
DEDICATED MARS	SCHALK BLADDE	:a 🗹	OTHER _ PERS	DILLAT		□	~	 ISITY POLYE	ETHYLENE		
CETACIDEC RON		LADDER					OTHER_	<u> </u>			
ANALYTICAL PARAMET			THCD	PRES	SERVATION	VOLUME					
CONTROL NUMBER _			MBER	<u>8.</u>	COHTE	REQUIRE	D CONTES	STED S	EL CLETTOB BURMA	TTERS	
VOCs 5 mL Purge		gaces	6260B / MTBE and TiCs		374 C1 374 C1	3 X 40 mL 3 X 40 mL		i —		-	
PESTICIDES (PES	TICIDES CNLY)	620U5W	77 MTBE and TICS 8081	4.5		2 X 1 L AG		j .		-	
SULFACE/CHLOR		Y USEPA 3	74 5 / 325 2 / 310 1			11112		<u> </u>			
SULFATE / ALKAU	NITY		74 5 / 310,1	4 0		1 x 1 L P] _			
		USEPA	. 353,2 EPA 415 1	-	SO, te pH <2 SO, te pH <2			ļ —			
MANGANESE - FIE	LO FILTERED		/846 GO10	-	VO, to pH <2		\vdash	i –			
METHANE / ETHAN			K 175		0740	3 X 40 mL		j	/		
FERROUS IRON		FIE	DORTEM DU	ESULT =							
☐ HYDROGEN SULFI		FIS LID METHOD L	ESULT = ESULT =								
DISSOLVED OXYG		COMETMOD - !	JODIFIED WINKLES	$\frac{R_{i}}{I}$	ESULT = LOCATIO	N NOTES					
الله PURGE WATER				—	SOCKIIO						
CONTAINERIZED (VES	<u></u>										
NOTES:	_										
[1 -	. /	/	1							
SIGNATURE 4	4. 3		7								
Checked Svij	27	_							MACTEC.	Inc	

								.7 9	,		2563	
FIELD DA	ATA RECOR	D - LOW	FLOW	GROUN	NDWA	ATER S	AMPLIN	∤G			-	
PROJECT	AMSA 68(G) Lin		F EUD SA	AMPLE ID [S175	- GWSMW	180 A	LOS NO	MR) R 3618048123.02			
CHADITADO :	MW-8	{			TR P B1:	ank [T.B ?	<i>j</i>		_	EVENTINO CON	<u>.</u>
ACTIVITY	START 074	∑ EMD)		SAVPLE	:Tib:∈ [C 15	5.2			рата (б. жүсү	,
WATER LEVE	EL / PUMP SETTI	NGS		REMENT PO			0007555	.5		6165		٠,
MITAL DEPTH TO WATER		—►Z feet	1Ct	PIOFIWELL PIOFIPROTO		CASING	PROTECTIV CASING SIG (FROMIGRO	CKUP	- (set	CASING DIFFER	· · - I -	·6'
FINAL DEPTH TO WATER	•	feet	HI STOR WELL D (TOR)		ĥo 17.	$\omega_{\rm oot}$	PID AMBIENT AI	R C.C	opmy	MELL	TER Q.O mon	<u>es</u>
SCREENLENG	37H] ()	feet	PRESSI TO PUV	JRE	_		PID WELL MOUTH	4.0		NIEGS	NTERGRITY NOTY YES NO N (AP &	ŀΑ
TOTAL VOL			REFILL	l. [_ r <u>.</u>	alsonn Discharg:		ppmy	CASI LOCK	ng 🔽 🗀 I	
PURGED	me (millilitors per m	gai ons nulei v Lmo co	SETTING		 26 authri		SHITTING			COLL		
PURGE DATA		.nu.e) k i na- çı	irtiaCu (maat	SPECIA		anerj				PUMP		
} }:	DEPTHTO PL	LRGE (mL/min)	TEMP IC:	CONDUCT (mS/c/	HYTIVII	pH (sents)	DISS Q2 (mg/L)	TURBIDITY (UTM)	REDOX (*/- mV)	INTAKE DEPTH (ft)	COMMENTS	
0745	Become	Pura	1.	Initi			7.54					
	 +	රු <u>(</u>)	1692	⊘.⊣	31	641	७४८	عا لاها	ાહિલ			
0 155	Samore	-1 ,,	e- <u>1</u>									
l 	<u> </u>			- -				·			<u></u>	
												
ļ					ļ							
<u> </u>									<u> </u>			
 	-				-							
		İ				•						
									<u> </u>			
EQUIPMENT TYPT Of E	DOCUMENTATION	ON		/				741	PŞ OFLIVB!	NĢ		
ı =	ATED MARSCHAL		🖂	OTHER_	PERIST	ALTIC		<u>v</u>	,	SITY POLYE	THY ENE	
	DEDICATED MARS	CHALK BLADI	DER	.) OTHER _			
	NUMBER			THOD MBER			ERVATION ETHOD	VOLUME REQUIRED	SAMP COLLEC		AMPLE BOTTLE ID LETT	TERS
				6260B			1/4C*	3 X 40 mL	1.3			
_	5 mL Purge CIDES (PESTICIDS	S ONLY)	8200S W	/ MTBE and 8084	T Cs	4 C	174 G* *	3 X 40 mL 2 X 1 L AG	<u> </u>] <u> </u>		
: =	TE / CHLORIDE / A	-	USEPA 33	74 6 / 325 Z ·	310.1	4.0		1×11P		j <u>-</u>		
SULFA	VTE / ALKALIN TY . NO.		USEPA 33 USEPA	74 5 / 310,1 353 9		4 C	• 6U, to pM <2	1 x 1 L P 1 X 500 mL	, []		
Loc				69A 415.1			,0,10 pr. <2 (U₂ to pH <2]]		
MANG.	ANESE - FIELO FIL	TERED	SW	846 GO10		HN	O₂ lo pH <2	1 X 500 mL	Р	j _		
	ANG/ETHANE/E!	HYLENE		₹175			1/4 C*	3 × 40 mL] _	//	
ı ==	DUS RON OGEN SULFIJE			LD METHOD LD METHOS								
ı =	::VED OXYGEN	FIELD N		w delaido			SULT					
PURGE OBS						_	LOCATIO	N NOTES				
PURGE WATE CONTAINERIZ		o										
NOTES:												
	11 1		./									
SIGNATURE	anda	3	1-7									
Countries of Eco	,	2									USCTEC D	

FIELD	DATA RE	CORD - LO	W FLOW	GROUNDW.	ATER S	AMPLIN	NG		_	
PROJECT		G) Lincoln, RI		F ELD 3	SAMPLE ID	R I 27	· 6WsM	W/400	= IOH NU	2591,77 3618048123.02
1 DCATON I	<u></u>			TRIF'B:	146K	<u> 75° -</u>			إ	EVENTINO CONTROL
ACTIVITY	START 6	0748	END C91	<u>ታ</u> . sam=n	E TIME	085	7			DATE (127/07
WATER LE	VEL / PUMP	SETTINGS		PEMENT POINT					215	Singer Comment
INITIAL (DEST TO WATS	TH 7.	64 ,	fact TO	PIOFIVELL RISER PIOFIPROTECTIVE		PROTECTIV CASING STI (FROM SEC	ickup [<u>*eng</u>	DIFFER	ence les
FINAL DEP	TH 7.	92	## 3798 WELL 0 feet (TOR)		9	PID AMB ENT A	R 0.0	ζ ³ 22Ψ/	WELL	
SCREEN LE	Питри,	10 ,	PRESSI Seet TO Pub		psi .	PID WELL MOUTH	1.2	ppmv.	INTEGR	NTERSRITY RITY YES NO N/A MAP <u>X</u>
1 OTAL VO PURG!	ED 1 20	57 gallo			1000-	DISCHARGI SETTING	E		CAS- LOCK COLL	(ED <u>X</u>
laurge vo	olume (milliliters	s per minute) x tin	ne gurakon (mins	les) x 0 00026 ga. n SPEC FIC	n unter:		_		PUMP	-
TIME	DEPTH TO WATER (It)	PURGS RATE (mumic)	TEMP (C I	ONBUCTIVITY ImSign)	oP (units)	DISS, G2 (mg/L)	TURBIDITY INTO	REDOX (INTAKE DEPTH (sq.	COMMENTS
0748	Begin	Purging	,01	न-व स्पा	,5(3)	(20g E/		' ' '		
C755	7.91	115	11.89	6474	€.5€	6.00	37.5	-99		
0800	7.91	145	16.36	C.450	6.45	0.00	27.4	-95		
0405	7.91	145	15,99	0.733	6.19	cec	26.0	-85		
0810	7.72	145	15-74	6,422	6.05	0.00	19.2	-80		
0815	7,93	195	15.92	8.416	5.98	0,00	14.3	-78		
0820	7.94	145	15.94	0.413	5.97	0.00	15.0	ープフ		
6825	7.93	175	16.36	8,412	6.00	0.00	10.2	-79		
0330	7.92	145	16.71	0,409	6.06	0.00	9.60	-83		
C835	7.92	145	16.95	0.408	6.22	0,00	6.92	-92		
0840	7. 92	145	17-16	0.407	6.51	0.00	6.37	-106		
C845	7.92	145	17.20	0.406	6.65	0,00	4.98	-113		
0850	7.92	145	17, 32	0.906	6.70	0.00	5.17	- 114		
0855	7.92	145	17.41	2.455	6.71	0.00	4.72	-115		
	NT DOCUMEN OF PU <u>MP</u>	NOTATION	· · · · · · · · · · · · · · · · · · ·					PE OF TUBI	NG	
I —;	_	SCHALK BLADDE	=R <i>दि</i> र	OTHER _ PERIS	TALTIC			<u>FEOFTORI</u>		ETHYLENE
		MARSCHALK B						OTHER_		
ANALYTIC	AL PARAME	TERS	,	THOD	5313	SERVATION	VOLJME			
CONTR	OL NUMBER_			THOD <u>YBER</u>		SERVATION E <u>TEQU</u>	REQUIRES			SAMPLE BOTTLE ID LETTERS
				83608		374 C*	3 X 40 mL	, <u>, , , , , , , , , , , , , , , , , , </u>	-	
	Cs 5 mt. Purge ST CIDES (PES)	Troines over the		/ MTBE and TICs 6081		0174 C*	3 X 40 mL 2 X 1 U AG	=		
		(TIGIDES ONLY) RIDE / ALKALINIT		6081 74 5 / 325.2 / 310 1	4 (2 X 1 L P	٠ ـ ـ	j –	<i>/</i>
<u> </u>	LFATE / ALKALI			74 5 / 310 1	40		1 x 1 L P		j _	_
,	y - NO ₅		USEPA		-	ട ു മ ഉപപ്പോട		_	j _	
		II D EN TODES		FPA 415 1		SO: 10 pH <4		=	<u> </u>	
		ELD FILTERED May stray (SMC)		/846 6010 K 175		KO ₂ to pH <2. CL/ a . C²	1 X 500 m3 3 X 40 mL		ļ —	
ı =	TPANEZETHA: RROUS (RON	NE / ÉTHYLENE		K 175 ILD METHOD		CI/4C' ESULT =	5 X ₹0 ML			
-	DROGEN SULF	DE		CORTEM DU		ESULT =			(
[]]DIS	SQLVED DXYG	GEN PIE	a - COHTEM CO	AÇO FIED WINKLER	R R	ESULT =				
1	BSERVATION	IS			1	LOCATIO	N NOTES			
PURGE WA		ON (
NOTES:	`									
1	. Per_	- 1 N	6	_						
SIGNATURE	E //	107 /								
Chacked By	<u> </u>			·	·					<u>MAC</u> TEC_ns

FIELD	DATA RE	CORD - LO	W FLOW	GROUNDW	ATER S	AMPLI	NG					
PROJECT	PROJECT AMSA 68(G) Lincoln, RI FIELD SAMPLE ID \$\frac{\frac{1}{2}}{2} = G \subseteq S M \omega 14 DP 2 \] JOB NUMBER 3618048123.02											
LOCATION	o Mw	14 D		TRIP (1	,ANK -	7B.	1	·····)	EVENTINO Z		
ACT:// TY	START	1403	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 15 09 SAMPL	5 TIVE	145	- 3			DATE 6/26/07		
WATER LE	EVEL / PUMP	SETTINGS	MEASU	REMENT POINT								
MITIAL DEP TO WAT	FR S.	09	fset TO	PIOF WELL RISER PIOF PROTECTIVA NOA!		PROTECTA CASING ST (FROM GRO	iokue 📉 🚅	feet	DIFFER	SI WELL Re-I		
FINAL DEP TO WAT		50	HISTOR WELL C Yes (TOR)	SEPTU	Ž feet.	PID AMBIENT A	NR 0.	f ppmv	WELL DIAMET	TER / nches		
SCREENLE	ENSTH	10	PRESS feet TO Put		psi	PID WELL MOUTH	1.8	, ppmv	INTEGR	RITY YES NO NA		
TOTAL VI PURG (purge v	if CH	, \$1.5° gate			- <u> </u>	DISCHARG SETTING	£		COTE	^{(FD} — <u>~</u> —		
	PURGE DATA SPECIFIC PUNP											
TIME WATER (th) RATE (mL-min) (C1) (ms/cm) (units) (mgL) (NTU) (+/- inv) DEPTH (th) COMMENTS												
1423	Beyin	Purging	f									
1410	5,49	125	1243	0.426	6.75	000	207	- /15				
1915	5.51	125	1240	0.425	6.75	0.00	743	-118				
1420	5.49	125	17.73	0.126	6.7/	000	324_	- // 4				
1425	5.49	125	1729	0.422	6.66	0.00	94.7	•				
1430	5.51	125	17.22	0.419	6.59	0.00	48,4	-//5	i	i		
1475	5,50	12.5	17.11	0,417	6.45	0.00	14.5	-112		<u> </u>		
1445	5.50	 	17.07	0,416	6,40	6,00		-107				
1450	5,50	125	17.11	624.5	6.37		17.1	-106				
1,,,,	3, 3	/ - 3	1 /- 11		6. 7/	200	<u> </u>	<u> </u>				
 				,	<u> </u>	···	i	İ				
					i				<u> </u>			
	NT DOCUMEN	TATION			L	•	: ,		_	<u> </u>		
) <u>EPUMP</u> DICATED MARS	CHALK BLADDS	.a Γ* Σ	OTHER PERIST	TALTIC		ľχ	j monuter Se ožistišii	VG SITY POLYE	OYLON ENTE		
<u></u>		MARSCHALK BI		OTHER PERIO	i Att. HQ		읃	OTHER	511110[1[THRENE		
	AL PARAMET			_								
CONTR	OL NUMBER _			THOD MBER		ERVATION <u>ETHOO</u>	VOLUME <u>REQUIRAD</u>	SAMP COLLEC		SAMPLE BOTTLE ID LETTERS		
X voc				826CB	HC	1/4C*	3 X 40 mL	\boldsymbol{x}	_	//		
_	Cs 5 mu Purge stroines vees	TIGIDES ONLY)	8250 9 w	/MTBE and TICs 8081	90 40	174 G*	3 X 40 cri		_	//		
\mathbf{I}	•	SCE / ALKALINIT	Y USEPA 3	74 S : 325.2 : 310 1	40		2 X 1 L AS 1 x 1 L P	<u> </u>	l –– l	<i>-</i>		
. —	FATE / AUXALI	N TY	-	74 5 / 310 1	40	; -	1 x 1 L P		i <u> </u>			
□NO	7 - NO ₃		USEPA	. 363 2 EPA 415 1	_	5U, lo pH <2 5U, lo pH <2		_]			
	~ NGANESE : FIE	LD FILTERED	-	2846 6010	_	00_10 pH <2 0_10 pH <2		=	—			
<u></u>		NE : ETHYLENE		K 175		174 C*	3 × 40 mL	' \- <u></u>	, –			
<u> </u>	RROUS IRON		FIE	CONTEM CJ								
	DROGEN SULFI SOLVED OXYG			LO METHOD PODIS EN PURIEL SO								
	URGE OBSERVATIONS FIELD METHOD - MODIF ED WINKLER RESULT =											
PURGE WA	ATER				—							
CONTAINS	RUFO (YES											
NOTES:		, 1	,	/:								
	19	1) P-	~		_							
SIGNATUR	L 1/2	2/		· · • ·								
Counked By	,				i					Magger iee		

FIELD D.	ATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLI	NG			
PPOJECT	AMSA 68(G) Lincoln, RI		FELD	SAMPLE ID	KA 65	20 11 M	75 C. K	DOB WO	JN/SER 3618048123.02
LOCATION ID	Mwi	<u> 15 </u>		TRIP 3	LANX	773	٠١			EVENT NO QQ
ACTIVITY	SIARI O	<u>815</u>	END AC S	SAMPL	E T'MF	190	Ĺ		_	DATE 6 No. 67
WATER LEV	ÉL / PUMP :	SETTINGS		REMENT PORT	_	A11,000			A	
MITIAL DEPTH TO WATE:	ı,	51	[∏ ĭC	PIOF WELL RISER PIOF PROTECTIVE	CASING	PROTECTIVE CASING ST (FROM GRO	TOKUP	1001	DIFFER	SAWELL
FINAL DEPTH TO WATER		(%	HI STON WELL (feet (TGR)		ب نو _{tontj}	PID AMBIENT A	ur C.o		WELL DIAMET	
SCREEN LEN	зтн	jō	PRESS (eet) TO Put		psi	FID WELL MOUTH	3,3	ppttv	NTEG/	CAP 🗹
TOTAL VOL	5 i. j		PERICLIONS SETTIN		-iit das	DISCHARG SETTING	E		CAS LOCK COLL	^{(ED} / <u>√</u>
PURGE DAT		ser minute) x tin	ne ocracon (min	specific	njis serj		·		PUMP	
	DEPTH TO	PURGE RATE (mismin)	TEMP (C)	CONDUCTIVITY (mS/cm)	pH (emils)	DISS 02 (mg/L)	1UPBECITY (UTV)	, ,	NTAKE DEPITA (II)	COMMENTS
6865	5 Fo.	بربر المرب	4.5% 1800			!				
	<u>8.48 </u>	100	1-74:1	0.128	15 161	107	11.7	415 i		
	8.51.	(t) (i	174	0.153	<u>S 73</u>	<u> ((-c.</u>	75.7	1-254		
	<u> ろしま</u>	100	L1.1_	J. Carlotte	<u> 25</u> 26	22.5	7 42	167		
-	8 14	<u> </u>	17.3	ξ.17c	158,0	0.384	4 83	770		
	<u>8.03. </u>	50	15 4	<u>(179</u>	581	i.e.	€ 99	1165	·	<u>-</u>
0350	1.38	\ <u>\</u> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	18.8	0.180	581	303	> 13	767		
(555)	198 798	- Sic	18 to 1	0.651	15,5t	0.56	5.0 X	1 L-C		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(C) (CD)		80		0.123	5.81		4.33	170		
	7 98 7.98	<u> </u>	18 c	0.155 0.155	5.81	0.54 0.50	441	7/01		
092e		-		6.407	.,3,54	0. 3-4	4,0.2	1 1 1 1		
D (AC)	Samp	te Trans	 		-					
									<u> </u>	
EQUIPMENT		TATION								<u>. </u>
TYPE OF							TY	<u>9€ 05 709∥</u> 1		
ı ==		CHALK BLADDE MARSCHALK BI		OTHER PERIS	TALTIC		[<u>~</u>	•	SITY POLY	
ANALYTICA			CADDEK				<u>L</u>	JOIFEX		
			ME No.	THOD MBER		ERVATION ETHOD	VOLUME REQUIRED	SAMP COLLEC	LE TED S	SAMPLE BOTTLE JO LETTERS
			40	8260B	_	174 C*	3 X 40 m.			/ /
	5 mL Purge		8200B w	/ MTBE and TICs		174 C°	3 X 40 mL			. /
_		CIDES CNLY)		8381	40		2 X 1 L AG	<u></u>	_	
\mathbf{I}	ATE / CHLORI ATE / ALKALI	IDE / ALKACINIT NITY		74 5 / 325 2 / 310 1 74 5 / 340 1	40		1 K 1 L P 1 X 1 L P	<u> </u>	_	
			ŲSEPA			SO ₂ ta pH <2		۳ 🗀	i	
;oc			05	EPA 415 1	HS	50, 10 pH <2	1 X 250 mL	AG _	_	
I 🗀		LD FILTEREO		840 6010		IO ₂ to pH ≤2		.P [_		
1 =	HANEZETHAN KOUS IRON	E/ETHYLENE	_	K 175 LD METHOD		274 C* = 0: 11 7 =	3 X 40 mL		_	/
777	OGEN SULFI	DE		LD METHOD LD METHOD	RESULT =					
$\Gamma =$	OLVED OXYS			COPRIO WINKLES		ESUL7 =			·	
PURGE OBS		s				LOCATION NOTES				
BURGE WATE CONTAINER 3	// 1	, vo			_	المحالية	K +4,1651113	y, ma	<u>}</u> +u +	ent off
NOTES:	(20	<u> </u>	•••			+0	Sample	الهيس		
		/ /		/	1					
	han	14 /3	1	-7						
SIGNATURE		·· <i>-</i>	-C -6	/						
Onecked Hy			<u> </u>							MACCESS Inc.

F}ELD I	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER S	SAMPLI	NG			•
PROJECT	ROJECT AMSA 68(G) Luncoln, RI FIELD SAURLE D RELAZ AWS MWKS DOWN JOB NUMBER D518048123.02									
LOCATION I	D Wix	155		дыят [ÇANK	TB	<u> </u>			EVENTING (C.A.)
ACTIVITY	START	905	END 153	SAMPL	B'AIT B.	150	' . .			DATE (6- 25 47)
WATER LE	VEL / PUMP :			REMENT POINT						
PEG_AITIM	TH	600		IP OF WELLIR SER IP OF PROTECTIVE	CASING	PROTECTI: CASING ST (FROM GRO	TOKUP	- feet	DIFFER	S/WELL SNCE 1981
FiNAL DEP TO WATE	TH	5.42 1	HISTOR WELL (Gol. (TOR)	DEPTH M. L.	S feet	PID AMBIENT A	ur (o o	pyero	WELL DIAMET	ER LIO inches
SCREENLE	AGTH	5 (PRESS		55	JI SW CIG RTUOM	4.9	Vende	INTEGR	NTERGRITY MTY YES NO NIA IAP
TOTAL VO	ED	gallo	— ☐ REFIL: :rs SETTN	,G		DISCHARG SETTING	E		CASi LOCK COL:	
(purgo volume (millitrors per minute) x time durating /thinules) x 0 00026 gril millitror) PURGE DATA SPECIAC PUMP										
TIME	DEPTH TO WATER IN	PURGE RATE (retirajo)	TEVP.	GONDUCTIVITY (mS/cm)	pP (units)	DISS, C2 (mg/L)	TURBIDITY (UTV)	REDOX (#/-mV)	INTAKE DEPTH (fi)	COMMENTS
1520	5,42	75	(8.5)	0.345	lista	6-70	1.44	-1731		
1525	342	75	15.7.	0,330	4 11	S.Ch.	2.61	1.5		
15 .48	ંડ મહ	32	্য ভ	0.340	612	5.71	0.54	1 35		
1528	200	pte T	<u>: ~~~ </u>		L			ļ. <u> </u>		
				<u> </u>		<u> </u>				
						Ţ				
				1		1				
				<u> </u>	[]				
			•••		Ţ	1				
							•			
						·	<u> </u>	<u> </u>		
					Į			ļ . —		
	NT DOCUMEN	MOITATI		<u>-</u>			70	DE-OFTUR		
		CHALK BLADDS	: [-/	OTHER PERIS	Tal Yie			<u>Perontus.</u> Taicannes	NG SITY POLYE	THVI SME
		MARSCHALK BL	_] OTTIEN _ = ENIB	. NE IIQ		⊢	TOTHER	3	
	AL PARAMET									
CONTR	OL NUMBER _	- -		THOD Mask		SERVATION <u>SETHOD</u>	VOLUME REQUIRED	SAME COLLEC		AMPLE BOTTLE ID LETTERS
_ ∆voc	Cs			83608	н	01/4 C*	3 X 40 m.,	[3] _	<u> </u>
	Cs 6 m⊆ Purge		8260B w	/ NTSE and TICs		CI / 4 C°	3 X 40 mL		_	
		TICIDES ONLY) (DET ALKALINIT	V 1105543	8081 74.5 / 325 2 / 310.1	4(2 X 1 'L AG 1 x 1 L P	⊢	. —	
_	FATE / ALKALI			74 5 / 310 1	4 (•	1 x 1 L P	–]]	·
NO₂	- NO ₃		USEMA	353.2	Ma	SO ₄ to pH <2	1 X 500 mL	۳ ً	j	
<u></u> 100			US	EPA 415 1	Н.	SU ₂ to pH <2	1 X 250 mL	. AG] —	
1 =	NGANESE - FIE			/846 6010		4O₂ to pH <2		-₽	ļ —	
1 =	THANE / ETHAN ROUS (RON	NE / ETHYLENE	-	K 175 LO PETHOD		CS:/ 4 C* ESULT =	3 X 40 mL	L	J	
_ =										
	SOLVED OXYG			AODIFIED WINKLE		ESULT =				
PURGE OF	SERVATION	5				LOCATIO				
PURGE WAI						Next of	Lorenza Arre	KX 5	غ ادت جادر	to- last
NOTES:	100	<u></u>				turce	re outings	Heigh	40 165	ca site for
		/	/			3 c- A (1,	201 - 201 C	x. where	C.,360 S	econocitist.
	/1	1.2	1							
S GMATURE	€ <u> </u>	<u> </u>	<u>#14.7</u>		l					
Ohecked By		U								MACREO en

FIELD	DATA REC	ORD - LC	W FLOW	GROUNDW	ATER S	AMPLI	NG				
PROJECT	AMSA 68(0	3) Lincoln. RI	-6USM	W2.00	DOB NU	MBER 3618048123.02					
LOGATION	100	- 20				TV				EVENTINO 2	
ACTIVITY	START (715	END 182	owner.	E 7 MB	160	8			DATE 6/26/07	
WATER LE	VEL / PUMP S			REMENT FOINT			- -				
INITIAL DEP TO WAT		58 ,	lcet To	PIDE WELL PISUR PIDE PROTECTIVE		PROTECTN CASING ST (LROM GR)	TORUP	[eel	OIFFER	ENGE feet	
FINAL DEP 10 WA1		e5 ,	185TO5 W(11) her ((OR)		leel	PID AMBIENT A	ar C. d	opiny	DIAMET		
SCREENLS	ENGTH	[0]	PRESSI		 25	PID WELL MOUTH	1,0	ppmv]	INTEGR	AP 🕊	
TOTAL VI PURS	SED /.	. 17 gallo		s		DISCHARG SETTING	ë	_	CAS LOCK COLL	GD <u>*** </u> 💆	
PURGE DA		perminute; x am	ne doration (minu	.tes) x 0 00020 gatin SPECIFIC	niiii.ter)				POMP		
TILLE	DEPTH TO	PURGE BATE (oc/men)	TEMP (Cr)	CONDUCTIVITY (inStan)	pH (mass)	DISS 02 (mg/L)	TURBIDITY (NTU)	REDOX (+/- mV)	OFFICE OFFI	COMMENTS	
1715		Parging	10.7	inoranj	111111111	1	117101	12.2 [[14]	<u> </u>	20% 3,5110	
1720	6.48	35	17 19	6.287	5.57	C:34	9/2	204			
1725	7.00	85	18.00	71.7	209						
1730		85	17.92	0.298	5.56	5.09	43.3	213			
1735		90	17.59	0.300	5.60	2.43		220			
1740	7.03	90	17,52	C.3cs	5.62	2.41	15.9	.222			
1795	7.03	90	12.71	0.303	5.65	2.44	4.63	273		1	
1750	7.03	90	17.44	0,305	5.68	1.45	3.77	229		<u> </u>	
1800	7.55	40	17.37 17.21	0.701	5.77	1.80	3.69	270			
1805	7.05	70	16.98	0.305	5.79	1.75	3. 72	271			
1877	7.43			. , , , , ,	3.//	1- / 3	7.74	2 . 1			
				•		 	1				
								<u> </u>			
	NT DOCUMEN	YATION						PE OF TUBI			
	<u>DEPUMP</u> DICATED MARS	C⊬ALK BLADD€	=R X	OTHER _ PERIS	TALTIC		<u></u>			ETHYLENE	
□ NC	M-DEDICATED.	MARSCHALK BI	_]отнея_			
ANALYTIC	CAL PARAMET	ER\$	\4E	THOD	nare	ERVATION	VOLUME	SAMP	ł F		
f .	ROL NUMBER _			MBER	<u>M</u>	<u>ETHÇD</u>	REQUIRED	COLLEC	TED S	SAMPLE BOTTLE ID LETTING	
Xivo	Os Os 5 mi, Purge		97600	8260B 7 MTBF and TICs		374 C* 374 C*	3 X 40 mL 3 X 40 mL]	· ./	
	STICIDES (PES)	(ICIDES ONLY)		8081	4 (2 X 1 L AG		i –		
Stu	LFATE / CHIOR	DE / ALKALINIT	Y USEPA 3	74.5 / 325.2 / 310.1	4 (·	t×1L₽		_		
	LFATS / ALKALII Is - NOs	NITY	USEPA 3 USEPA	74.5 1310.1 . vsa a	4 (01 80 <u>.</u> to pH <2	1 x 1 t 2 1 X 500 mt		<u>.</u>		
				EPA 415.1	_	502 to pri <2		_	i —	<u> </u>	
I ⊢MA	NGANESE - FIE	LD FILTERED	5W	/846 6010	1:1	(C _a to pH < 2	1 X 590 ml		i _		
M≘	THANS / ETHAS	E: ETHYLENE	RS	01/4/01	3 X 40 mL		j	/ <u></u>			
	RROUS IRON			COHTEM C.I		· · · —					
	HYDROGEN SULFIDE FIELD METHOD RESULT = _										
	PURGE OBSERVATIONS LOCATION NOTES										
PURGE W	PURGE WATER										
NOTES:	ONTA NERIZED ZYES NO										
NOTES:		-									
	12	-1 1	1/2								
SIGNATUR	E <u>F</u>	- 1			ļ						
Disasked B	·							MAKTER TO and			

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING										
PPOLECT	AMSA 68(G) Lincoln, Ri		FIELD	SAMPLE ID	R7 23	-6 WSA	14201	2 1 308 NU	If.1131 FR 3518048123.02
LOCATION I	ID MY	- 200		TRIP B	LANK	78-	7			EVENTINO 2
ACTIVITY	STARO	1605	END / 7.05	SAUP.	g. Time	1650	 8			DATE 6/26/27
WATER LE	EVEL / PUMP	SETTING\$		REMENT POINT						
MITIAL DEP TO WAT		97	TO [156]	PIOF WELL RISES PIOF PROTECTIVE	CASING	PROTECTIV CASING ST (FROM GR)	:CKJF	'eet	DIFFER	NCE feel
FINAL DEPTH TO WATER 7.39 [en] (TOR) 19.37 [en] AMBIENTAR 2.0 ppms WELL DEPTH Januthos										
SCRESN LENGTH PRESSURE P D WELL INTERGRITY YES NO NA 1661 YO PUMP psi MOUTH 1/2 ppmv CAP X										
TOTAL VO. 1999 gallone REFILL DISCHARGE LOCKED LOCKED COLLAR COLL										
PURGE DA		per aunurgg x un	ne utiration (min.	SPECIFIC	n liliteri				PUMP	
TIME	DEPTHITO	PURGE PATE (mL/min)	13 MP (D)	CONDUCTIVITY (inStant)	cH (poits)	DISG, O2 (mg/L)	TURBIO:TY (NTU)	2600X (*/- (*V)	INTAKE DEPTH (ft)	COMMENTS
1605	Begin	Culying					i			
1615	7.27	150	15.29	0.318	6.02	1015	94.7	151		
1620	7. 32	150	14,55	0.314	5.65	8.54	71.8	140		
1625	7.35	150	14.19	0318	5.67	8.35	21.2	133		- · · · · · · · · · · · · · · · · · · ·
1630	7.37	150	14.12	0321	5.65	7.18	14, 2	132		
16 35	7.37	150	17.01	0.322	5.65	7.21	9.32	108		
16 40	7. 78	1500	14.15	0.323	5.67	6.76	4.59	127		
16 45	7.78	150	14.21	0.354	5.65	6.54	5.81	124		
1650	7.39	150	14,00	C-327	5.67	678	5.95	123		
1655	731	150	13.91	6.327	5.69	6.17	5.44	120	, <u>-</u>	
	, ,]		
		<u> </u>			1					
		,			<u> </u>			<u> </u>		
				<u> </u>	<u> </u>		<u> </u>			•
	NY DOCUMEN DE POMP	ITATION					TV	er <u>na rub</u>	NG.	
I		СНАЦК ВЦАДОР	08 \(\sum_{\chi} \)	OTHER _ PERIS	TALTIC		_		=∞ S:TY POLY€	PRHYLONE
OM []	N-DED-CATED	MARSCHALK BI		. –				OTHER_		
ANALYTIC	AL PARAME	ER5		THOD	http://	ERVATION	VOLUME	SAN=		
CONTR	DL NUMBER_			MBER		ELHOD	REQUERED			AMPLE BOTTLE ID LETTERS
⊠voc				8260B		974 C*	3 X 40 m.L	<u> </u>] _	//
i—	Os 5 mt, Purge stringnes voes:	TICIDES ONLY)	82603 w	7 MTBE and TICs - apsi	НО 4 С	1/4 C*	3 X 40 mL 2 X 11 AG			
. =		:DE. ALKALINIT	Y USEPA 3	74 5 (325.2 / 310.1 -	40		1 x 1 L P	H] <u>—</u>]	
☐su.	FATE / AŁKALI	NJY	USEPA 3	74 5 / 310.1	4 🤇		1 x 1 L P		i <u> </u>	
) - NO ₂		USEPA			504 to pH <2		_]	
100	- NGANESE - FIE	I D CH TODED		EºA 415 1	-	50., to pri <2		· '=] —	
! '□		VE / ETHYLENE		'846 6010 K 175		(O ₂ to pH <2. (174 €*	1 X 500 mL 3 X 40 mL	٢ إ	ļ —	 ,
1 =	RROUS IRON	12.1.11. 66.46		LD METHOD		5ULT =	-	L	· —	<u> </u>
HAZ	OROGEN SULF	IDE	FE	да метнор		ESULT =				
	SOLVED OXYG		LO METHOD - N	IGDIFÆD WINKLER	₹ P.!			·		
PURGE OF	BSERVATION	5			-,	LOCATIO	N NOTES			
CONTAINER) NO								
NOTES:	DUF /M:	5/m55	colle	eted	$\neg \neg$					
] '	23 ·	<i>?</i> ?	1							
SIGNATURI	E 1/4_	7	1 c							
Chasses By					-					MACTED we

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW.	ATER S	AMPLI	NG					
PROJECT	AMSA 68[G) Lincoln, R1		8900)	ED SAMPLE DE DE DE DE LE CONTRACTION DE LA CONTRACTION DEL CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTI			DA BOX	PABER 3618048123.02			
LOCATION	15 <u>64 4</u>	27 27		TR.P BI	LANK	TB,	3.			EVENTRO () 3		
ACTIVITY	START	615	_{вис} 17(0		ETNE	1710	<u> </u>			DATE 6 26 67		
WATER LE	WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT √/ TOP OF VIELLINGER PROTECTIVE CASING / WILL											
PEQ JAITIRI TO WAT	PTH.	34 -		PICE PROTECTIVE	OASING	PROTECTIVE CASING / WILL CASIN						
FINAL DEP TAW OT	1 6.	. 38	WEUL (TOR)		e feet	PID AMBIENT A	.a. 0.0	<u> pgdy</u>	DIAMET			
SCREEN IS NOTH Company PRESSURF PRESSURF PRESSURF PROWELL NTEGRITY: YES NO NA CAP CAP												
TOTAL VOL 0.93 gallons SETTING DISCHARGE LOCKED COLLAR Z												
PURGE DA		per or nute) x tin	ne duration (min)	utes) y d budž6 galin SPS CIFIC	niditaer)				⊃UN⊃			
TIME	DEPTH TO	PURGE RATE (mlimin)	TEMP (C1)	YTIV1DUCPOC	pH	DISS G2	TURBIDITY	REDOX 1	INTAKE DEPTH (III)	COMMENTS		
(C.2.s	WATER (III) (Parage)	RATE (mL min)	7 A.S	(mS/sm)	(unis)	(mg/L)	(NŢU)	150 000	<u> </u>	OWNER S		
16.34	5.35	50	15 ye	é ary	533	1.35	;७.५	7,24,				
1633	5 38	15.	18.6	6.113	5 50	0,43	15. 2	1.38				
Luc	5 38	30	195	4.362	<u> 555.</u>	4.52		<u> 97</u>				
1595	6, 38	30	15.7	3.313	532	6.80	10.5	- 2/2	!			
16:50	5 3%	80	18 1	6 115	2.27	6.82	11 3	-34				
45%	5 38	80	18.5	ें €, २३५	284	0.30	4.85	-39				
1700	<u> </u>		15.3	C 232	S 5 4	0.75	4 14	- 36-				
170%	5.3%	80		0 3 2 7	S 84	0 74	4,73	36-	 	 		
17:0	Samo	15 Tim-	<u>v. </u>		 	1	1		<u> </u>	1		
	··		<u> </u>				 -		<u> </u>	1		
]			
		"		· · · · · · · · · · · · · · · · · · ·	† -			!				
I	NT DOCUMEN	TATION			• •		T1/	SE/DE TI /PI	NG.			
I ———	<u>DE PUMP</u> DICATED MARS	SCHALK BLADDE	≣3	OTHER _ PER:S	TASTIC		i v	PEOFICE HIGH DEN	NG ISITY POLYI	ETHYLENS		
		MARSCHALK B	_					OTHER _				
ANALYTIC	CAL PARAMET	TER\$	B.4E	тнор	9858	ERVATION	VOLUME	SAME				
. /				MRES	M	ETHQD	RECURED	CCLUE	<u> </u>	SAMPLE 30TTLE ID LETTER		
	Os Co 5 mt, Purge		8280 2	8260B / MTBB and TICs		374 C° 374 C°	3 X 40 mL 3 X 40 mL	[3	<u> </u>			
1 =		TIC DESIGNLY)	020V 9 W	8081	4 (2 X 1 L AG		<u> </u>			
		tiDE / ALKALINIT		74 5 / 325.2 / 310.1	4 (txtlP					
1 —	LFATE (ALKAD) 5 - NOS	NITY	USEPA 3 USEFA	74.5 / 310.1 (202.0	4 (1x112 1 x 500 mu	,	_			
				1 353 2 EPA 415 1		504 to pH <2 504 to pH <2		_	i –	<u> </u>		
	NGANESE - FIE	LD FILTERED	\$W	/846 6010	,	(O ₎ to pH <2		.» F	i			
\perp		NE FETHYLENS	RS	K 175	н	0174.05	3 X 40 mL		_	/		
<u> </u>	RADUS IRON DROGEN SULFI	:ne		CONTEM OU								
\perp	SOLVED OXYS			ELƏ METHOD MODIFIED WINKLES		ESUL1 = ESULT =						
PURGE O	BSERVATION	ıs				LOCATIO	N NOTES					
PURGE WA	- /	У чэ		— F1-11								
NOTES:					= $+$							
SIGNATUR	/h	Ja 3.	1	7								
Countries			<u> </u>							MAGTEC, fee		
C. C. C. C. C. C. C. C. C. C. C. C. C. C										0:E :E		

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
PROJECT	AMSA 68(C	G) Li <u>ncoln, Ri</u>		PISLO 3	C) BURMAS	REAS	ew jaw	31007	Joa No	/4BER 3618048123.02	
LOCATION ID	Mw	(- 31 D	TRTP 8:	LANK	_L,(2)	<u> </u>			EVENTNO LA		
ACTUITY	START !	<u>[</u> [30]	18 95	= \$AMPU	8 T.MB	<u> 1832</u>	3			DATE U 01-6 7	
WATERLEVE	EL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTION	ış.		PARILIE	COMPU	
NITIAL DEPTH TO WATER		.43 n	lcel TC	PIOF PROTECTIVE		CASING ST (FROM GRO	ICKUP [- Feet	CASING DIFFER:		
FINAL DEPTH TO WATER		14	H <u>ISTOR</u> WOLL 0 IAM (108)		PID AMBIENT A	IR 0.0	كشهر ــ	WELL DIAMET	<u> </u>		
teel TOPLAS 1 - est MOLTH 1.4 source CAP -										RITY YES NO N/A	
CASING CASING LOCKED											
(purge volu	mu (mi dileis			res i x 0 00026 ga: m	n-diteri						
	A SEPTH TO \$	PURGE	TEMP	SPECIFIC CONDUCTIVITY	5H	DISS 02	TURBIDITY	PEDOX	PUMP INTAKE	1	
TIME V	MATERNO	RATE (ost.imin)	(01)	(mSrcm)	(units)	(mg/L)	(NTU)		DSPTH (III)	COMMENTS	
1720	Berjam	Pary N	_	,	1 ,		1 [
1725	A 5.4	610'	159	2), 35%	6 31	Cisc	166	-101			
1730	4.406	<u> </u>	. 155	<u>(35/s</u>	6.32	0, 345	19 0	- ID6			
	\$ 55	757		0_356	<u> </u>		1.473.	1145			
	6.28	75	17.6	0.358	634	1	7.09	- 1157			
	6.13	75	17.51	0.350	6 24	 -	<u> 430</u>	- 115			
	6.23	75	17.4	6.374	6.14	0.20	5.82	-115			
1755	2.36	75	[7.3	0.377	6.24	0.18	14.61	-11 (₂ ;			
	6.3	75	175	6.376	6,24		4.11	- (17			
H	£.34	75	17.2	0.3351	€ .24	0.23	4.95	-116			
1 - 12 - 1	6.14	75	<u> 180</u>	0.377	6:35	0,18	4.23	118	ļ		
	ا ۱۹۰۱ ما	15	13.8	0.381	625	6.19	4.21	-11-7	-		
	6 14	75	18.0	0 38	625	0.19	ዓ.ኋ3	-118			
(%25)	-		مہد	1	L	<u> </u>	<u> </u>				
TYPE OF P		MUUN		/			TY	PE OF TUBI	<u>10</u>		
		CHALK BLADDE	ir 🗸	OTHER _ PER ST	TALTIC		$\overline{\nabla}$	MIGHI DEN	SITY POLYE	ETHYLENE	
		MARSCHALK BL	ADDER					OTHER			
ANALYTICAL			r.1E	7-100	ppre	ERVATION	VOLUME	SAMP			
·/	NUMBER _		NU	MBUR	M	<u>COHTE</u>	REQUIRED	COLLEG	<u>TED</u> <u>S</u>	SAMPLE BOTTLE :DILETTORS	
Vocs	Set Se			6260B		174 C°	3 X 40 mL	3	!		
) =	5 mL Purge CIDSS (PEST	ficioss only)	82508 w	7MTBE and TICs 8081	HC 4 C	074 G*	3 X 40 mL 2 X 1 L AG		 }	/	
	•	IDE / ALKALINIT	Y USEPA 3	74 5 (325 2 - 319 1	40		1 x 1 L P	<u> </u>	i –		
SULFA	ATE / ALKAL M		USEPA 3	74.6 / 310.1	40	2°	1 × 1 L P] _		
□ 100.	NU ₃		USEPA			50, te pri <2 50, te pri <2] —		
D10C	ANTES SE	n su tenen		EPA 415.1		50; 10 pH <2		<u> </u>	ļ —		
I 🖳		LD FILTERED := . ETHYLENS	-	/846 6010 K 175		9O ₁ to pH <2. Cl / 4 C°	1 X 500 mL 3 X 40 mL	· ' _	J 1	 ,	
_	ANE (E) HAN DUS IRON	ILENE		K 175 . D MEYHOD			3 X 40 mL				
ı =	OGEN SULFI	DE		LC METHOD							
\vdash	EVED GXYG		LO METHOD - #	MODIFIED WINKLER		ESULT =					
PURGE OBSI						LOCATIO	N NOTES				
PURGE WATE CONTAINER 2) 40									
NOTES:	\bigcirc	, _ 		,							
1	1	60	1								
SIGNATURE: _	Um,	Je	ہے۔ مہر	· -—							
Oper- on Sec										142.0TS0 100	

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
PROJEC*	AMSA 68	S) Lincoln, Ri		FELD 3	SANFLE ID	D REAL COLOR PLANT 200 SAUDEFR 3518					02
EGCATIONID	MW	- 7.5		TAIF 8.	ANK	TB-3				EMENTING Q	a .]
ACT WITH	START (745	END 183	SAMP:	S TIME	18	<u>۶</u> د.			DATE 6-27-0	- 7
WATER LEV	/EL / PUMP :	SETTINGS		REMENT FOINT PLOS WELL RISER		PROTECT:		•	CASIMO	·wen	$\overline{}$
MEG LAITIN ETAW OT	면 네.	<u> 42 </u>	leur (T	PIOR PROTECTIVE		CASING ST (FROM GRO	TOKUP		DIFFER		tent
F:NAL DEPT TO WATE		52	WELL (feet TOR)	FRTH [S fact	PID AMBIENT A	R OI	epmv]	WELL DIAMET		ches
SCREENIEN	iGrH /	0	PRESS		psi	PID WELL	03) ppmv	INTEGR	TERGRITY TY YES NO AP	AWA ——
YOYAL VOI PURGE	D 1-6	14.11	mes SETTIN	iG	di tuas	DISCHARG SET (ING	i		CASH LOCK COLL		<u>₹</u>
PURGE DAT	_	described of the description	re austrian miss	ilws) x 0 00026 ga m SEECIFIC	na ugrj				PUMP		
· · · -	DEPTH TO	PURGE RATE (mL/m/n)	reseP kOtt	CONDUCT VITY (mSter)	pH (muls)	DI\$8 O2 (mg·C)	TURBIDITY INTO	REDOX (*÷πVi	INTAKE DEPTH (ft)	COMMENTS	
1750	Beau	x Pure					311101	122.11.41	DEI TOTAL	001. #21110	
1755	457	100	16.9	6.240	6.05	051	708	-71			
1800	4,52	(CČ)	16.3	1.039	601	0.29	1.654	- 70			
1802	4.51	<u> 1ずい</u>	16.4.	0.232	يدي عال	.458.	734	L 71_			
1810	4 53	130	166	0.236	6.03	0 45	270	- 73	···		
1815	4.5%	126	16.5	0.325	602	0 39		1-73			
1830	<u>4.52</u>	<u> </u>	16.0	6.333	6.01	6.39	150	74			
1 83 5	<u> </u>	120	15,8	0.231	6.64	0.33	141	-76			
10.30	څ. پـ	જા ત માં	nex.		 	<u> </u>		 			
	., 							 ;		n	
		· · · · · ·		<u>'</u>		 :-	· 				
<u> </u>	· - · · ·	<u>:</u> :		İ		1		 -			
EQUIPMENT		TATION		•						· · · · · · · · · · · · · · · · · · ·	
1486,06		CHALK BLADDE	eo [77	OTHER _ PERS	TAC TIC		TY To	75 OF TURN Thigh Dens	<u>IS</u> BITY POLYE	THYLENE	
ı =		MARSCHALK B		J 03-11 K _ F2K.3	1ALIIG		F	OTHER_	311110012		
ANALYTICA	L PARAMET	ERS		TUDO	555		LOUINE				
CONTRO	E NUMBER _			THOD MBER		ERVATION ETHOD	VOLUME <u>REQUIRȘI</u>			AMPLE ROTTUE IDILE	TŢĘŖŖ
				82GCB		3/4 C*	3 X 40 mL	<u>[3</u>]			-
_	s 5 mL Purge NCIOES (PES)	CIDES ONLY)		// MTBE and TICs 8081	9C	01/4 G* 0*	3 X 40 mL 2 X 1 L AG			—;——'——	-
ı =	•	DE, ALKALINIT		74 5 / 925 2 / 310 1	4 0		1 x 1 1 P				
	FATE / ALKALI	NITY		74.5 / 310,1	4 0		1x1_P	🗀			
			USEPA US	EPA 415 1	-	SU,10 pH <2 SU,10 pH <4			_		
		LD FILTERED		/846 GC (O	-	NO _a to pH <2		=			
L		NE / ETHYLENE	R\$	¼ 175	но	0.74.05	3 × 40 ±12				
	ROUS IRON FOREN SULE	ine		LD METHCO		_					
_	ROGEN SULF (CLVED OXYG			ILD METHOD 200 AIED WINKLER		ESULT =					
	SERVATION						N NOTES				
PURGE WAY		. NO			_	Zere	- <u></u>		NL 4.33	L)	
NOTES:						-	- - 61-	(A)			
	/.	1									
SIGNATURE	[h-	A.	34	イフ	j						
, and the second	V		····		1						
Checked By										MAGYAG	

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING										
≏RCJECT	AMSA 6B(G) Lincoln, RI	· ·	FIELDS	SAMPLE (D	KI 23.	- GW5M	4220	e27 OR. NII.	LYSS 18 3618048123 02
LOCATION	o Mw	-221	ל		LANK	TB-	<u>7</u> .			EVENTING [2]
ACTIVITY	START	1733	END 182	수 swei	LTIME	1807	,			DATE 6/27/47
WATER LI	EVEL / PUMP :	SETTINGS	MEASU	REMENT POINT PIGEWELL RISER		PROTECTION				
MITIAL DER TO WAT	PTH ER	4.50	DONO)		DIFFER	ENCE FOR				
FINAL DEF		1.60	193704 WELL (feet (TOR)		7 ₄₆₆₁	FID AMBIENT A	un Co	י פיניפן	WELL DIAMET	FER 1 100 (15)
SCREEN LENGTH 5 PRESSURE PRIORE PAI MOUTH 64 party YES NO NA CAP X										
TOTAL VOL PURGED 1.94 galkons Schang Setting S										
			ne duret on (min.	.lest × 0 00020 дайл	nil nier)	36111143			COLL	
PURGE D				SPEC-F*C					PUMP	
TILLE	DEPTHITO WATER (In	PURGS RATE (mL/min)		CONDUCTIVITY (m5/cm)	pH (units)	DISS C2 (mg·L)	TURBIDITY INTUI		INTAKE DEPTH (ft)	COMMENTS
1733	Begin	849,09								<u>, , , , , , , , , , , , , , , , , , , </u>
1735	4.58	170	16.88	0-251	6.42	4.69	13.1	-17		
1740	4,58	170	15.83	6.222	6,03	600	11.0	9		
1745	4.59	170	15.50	8.218	5.87	0,00	704	24		
1750	4.60	170	15.54	0.213	5.79	0.00	5.68	30		
1755	4.60	170	15.25	0.209	5.75	6.00	5.28	36		
1800	4.60	170	15.38	2.210	5.71	0.00	5.05	39		
1875	4.60	170	15.78	2.211	5.70	0.00	7.99	41		
<u></u>						ļ			ļ	
									!	,,
									<u>!</u> ,	
					<u> </u>	_			<u> </u>	
		74710								
I	NT DOCUMEN <u>Xe Pump</u>	TATION					<u>í</u> Yí	<u> </u>	NG.	
0∃	DICATED MARS	СНАЦК ВІ АДОБ	ee 🗶	OTHER PERIST	TALTIC				SiTY POLYE	THYLUNE
		MARSCHALK B	LADDER					OTHER_		
ANACYTIC	CAL PARAMET	ERS	ME	THCD	PRES	ERVATION	VOLUME	SAME	LE	· - "
	_		NUI	<u>VBER</u>	M	Eiköö	9EQU 950	COLLES	XTED S	AMPLE BOTTLE ID LETTERS
Živo □ vo	Cs Cs 5 mL Purge		ADCOR III	82008 / MTBE and TICs		174 C1 174 C1	3 X 40 mL 3 X 40 mL		<u> </u>	
ı ==	STICIDES (PES)	CIDES ONLY)		80\$1	4 C		2 X 1 L AG	H	i —	
su	LFATE - CHIOR	DETALKAÇIND	Y USEPAS	74 5 / 325 2 / 310 1	40	;*	1 x 1 L P		j	
i <u> </u>	LFATE / ALKAÇII	VIIA		74.5 / 310 1	40		1 x 1 L P		<u> </u>	
100	y (NO _a G		USEPA USE	333 Z EPA 415.1		50, 10 pH <2 50, 10 pH <2			. — }	
I	NGANESE - FIE	LD FILTERED		248 6010		O _p to pH <2		=	i –	 -
⊟\n∈	THANE / ETHAN	æ/st∺ylene	RS	K 175		174 C°	3 X 40 m.		j _	<u></u>
_	RROUS IRÓN		FE	LO METHOD	RE	SULT = [
	OROGEN SULF: SOLVED CXYG			LD METHOD CODIECCO WAY FO						
$\vdash \vdash$	BSERVATION		A - CONTENA CO	ODIFIED WINKLES	, K:	LOCATIO	N NOTES			
PURGE WA		<u> </u>				LOUATIO	n notes			
CONTAINE	RIZED 💋BA	40								
NOTES:										
	. ••)	c	. =						
SIGNATUR	E X		<i>-</i>	_{-						
Charakaat ike	<u> </u>									MACTED, the

ſ	FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
	FROJECT	AMSA 680	G) Lincoln, RI	Fencis	AMPLE IO	MPLEID RILLY CWSHWINDOL			 иов ки	MEER 3618048123	02	
	LOCATION	5 <u>M</u> w	Mw-24B			.ANK	<u> 18 2</u>				EVENTAC O'X	
	NEWTOA	START 1	5 35	END	SAMPLE	ETIME	17	10			ای طالا کا 3475	
Ī	WATER LE	VEL / PUMP :	SETTINGS	MEASU	REMENT POINT		PROTECTIV	:=		CASING		: ,
	NITIAE DEP' TO WATI		^```` 5.99	[564] [70	PIOSIWELLIRISER PIOSIPROTECTIVE		CASING STO (FROM GRO	CKUP	1001	D.FFER WELL		loof)
	SMAL DEP TO WAT		37%	WELL C MELL (TOR)		loot	PIO AMBIENTA:	R (7.0	<u></u>	DIAMET	ren <u>(7-0 ja</u> ntergrity	(288)
	SCREEN LE	NGTH	5	PRESS feet TOPUN		psi	PID WELL MOUTH	1.4	ppiny	INTEGR	RITY YES NO	n⁄a i ☑
١	TOTAL W PURG (purge w	ED G.	10 gall sper minute) x lim	REFILL ons SETT Need duration (minutes)		ndk der)	DISCHARGI SETTING			COLL	KED 🗀 🔽	
Ì	PURGE DA	ATA			SPEC.FIC			T 100:0171/	Lacaba	PUMP		
Ì	TIME	DEPTH TO WATER III)	PURGE RATE (#12/min)	TEMP (C1)	CONDUCTIVITY (oH (units)	(0:01)	TURBIDITY INTU:	(+4 mV)	INTAKE DEPTH (ft)	COMMENTS	
٠. د	1535	Becom	Bungle	, e'g				<u> </u>	<u> </u>			
	1540	ઉ.ત્તન	10,	155	0 445	6.54	1.2.3	<u> ১৮) </u>	-17 G			
ļ	1545	9.35	tec	. i < 4	6.419	6.47	0.50	54 V	-16-5		<u></u>	
	1550	4.97	(##)	<u> </u>	_ <u>& 4</u> 19	<u>१ तर</u> ू	1 C.Y.C.	14-3	77 <u>1 Le c</u>	: 		
	1555	10:11:10	1	ोप.पी	0.413	643	6.49	95.5	-1600			
	1605	4.53	100	11 (.45	0.430	६ पप ६ पप		93.4 764	1-152 1-147		Tunned From	Pur
	16:10	ो। वस		14.8	0.438	८ .प्	1112	, , , , , <u>, , , , , , , , , , , , , , </u>	1 1-1 7		te house erest	
12.7	17 30	<u>₩<.14</u> 6.14	Purged.	i '			 		 	i		
- '	173\$	9 78	Began	14.8	\$	6.50	P.O.1	48.4	~14 3	 		
	(740				,		1		1			
		+ C. W.P	1				1.7				1	
								<u> </u>			<u> </u>	
			·				1			<u> </u>	1	
		NT DOCUMEN SERUMP	NOTATION		-			TY	PE OF TUB	INS		
	1		SCHALK BLADD	ER 🗸	OTHER_PERIS	TALTIC		Ē	~	NSITY POLY	ETHYLENE	
	☐ NO	N-DED CATED	MARSCHALK B	EADDER					OTHER_			
	ANALYTIC	CAL PARAME	TERS	ME	THCD		SERVATION		SAM	PLE		
	/	-		<u>Ni.</u>	MBER 82007		<u>SETHOD</u> CI / 4 C*	REQUIRE 3 X 40 mL	_		SAMPLE SOTTLE (D.L.) / /	TILERS
		Cs Cs5 m ∟ Purqe		8260B v	8200B v/MTBE and TICs		0174 C°	3 X 40 mL	_	_		_
		-	TICIDES ONLY)		8081	4 (c.	2 X 1 L AG	· 🗀		/	
			RIDE / ALKALINI'		974 5 / 325 2 / 310.1		C'	1×1LP 1×1LP		- 片		
	1 🖵 🗀	LFATE / ALKAL _Z - NO ₁	INITY		374,5 / 310,1 4 353 2		С° ,50, 10 рн <2		LP [i -		
	<u> </u>	-		US	iEPA 415.1	IH,	5O ₄ 10 pH <2	1 X 250 m	LAG 🖺	<u> </u>		
	MA	NGANESE - FII	ELD FILTERED	SV	V846 6010		NO ₅ to pH <2		=	╡ –		
	I = 1		NE / ETHYLENS		SK 175 ELD METHOD		ÇIZA C° PESTILYE	3 × 40 m/s	_	–	/	_
	-	RROUS IRON DROGEN SULF	TDE		COH: 3M CES COHT3M CES			,				
		SCLVED OXY:			MODIFIED WINKLEI		_					
	1	BSERVATION	vs				LOCATIO	N NOTES				
	PURGE WILL CONTAINS		CV C									
	NOTES:	· · ·			/							
		/	/ ~	1	-							
	SIGNATOR	" /L	1. 3	2-1-2-1	7							
	0.0.00	· • •				ļ						
	Checked 2	v									MACTE	J. Jes.

APPENDIX G DATA VALIDATION SUMMARIES

APPENDIX G-1

DATA VALIDATION SUMMARY 2006 ANALYSES

Data Validation Summary JANUARY 2006 SAMPLING EVENT KEMRON USARC GFPR Lincoln, Rhode Island

1.0 INTRODUCTION

Thirty-seven soil samples and thirty-six aqueous samples were collected from January 17th through January 31st, 2006 at the Kemron USARC GFPR sites in Lincoln, Rhode Island. Sites include the Potential Past Disposal Areas (#122), Former Gas UST (#123), and Septic Systems (#124). Soil and water samples were collected for analyses determined for each location based on historical use and potential contamination. Soil samples were analyzed for one or more of the following parameters:

- Volatile organic compounds (VOC) by Method 8260B
- Semivolatile organic compounds (SVOC) by Method 8270C
- Volatile petroleum hydrocarbons (VPH) using Massachusetts Department of Environmental Protection (MADEP) methods
- Extractable petroleum hydrocarbons (EPH) using MADEP methods
- Pesticides (PEST) using Method 8081A
- Total metals by Methods 6010B, 6020, and 7471A
- Lead using synthetic precipitation leaching procedure (SPLP) Method 1312

Aqueous samples were analyzed for one or more of the following parameters:

- VOCs by Method 8260B
- Low concentration Method 8011 for 1,2-dibromoethane (EDB) and 1,2-Dibromo-3-chloropropane (DBCP)
- Polyaromatic Hydrocarbons (PAH) Modified 8270C for Low Concentration Benzo(a)pyrene (Site #124 only)
- SVOCs by Method 8270C
- PEST by Method 8081A
- Total and dissolved lead by Method 6020

All analyses except EPH and VPH were performed by Kemron Environmental Services of Marietta, Ohio. Analyses for EPH and VPH were performed by Accutest Laboratories of Marlborough, Massachusetts.

A Tier II validation was completed for all samples. For twenty percent of samples a Tier III data validation was performed for VOC, SVOC, PAH, PEST, and metals analyses. A chemist review was performed on the EPH and VPH analyses. The data package was validated using Region I EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (USEPA, 1996), Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (USEPA, 1988), Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (USEPA, 1989) and the Kemron USARC Massachusetts GFPR Quality Assurance Project Plan (Kemron, 2005).

The following samples and sample delivery groups (SDGs) are included in this data evaluation:

Field Sample ID	Kemron SDG	Accutest SDG	Sample Date	Comment
RI24-SBS0102	L0601350	M54062	1/17/06	
RI24-SBS0202	L0601350	M54062	1/17/06	
RI24-SBS0302	L0601350	M54062	1/17/06	
RI24-SBS0403	L0601350	M54062	1/17/06	
RI24-SBS0503	L0601350	M54062	1/17/06	
RI24-SBS0602	L0601350	M54062	1/17/06	
RI24-SBS0702	L0601350	M54062	1/17/06	
RI22-SBS0202	L0601350	M54062	1/18/06	
RI22-SBS0301	L0601350	M54062	1/18/06	
RI22-SBS0502	L0601350	M54062	1/18/06	
RI22-GWS0201	L0601350		1/18/06	
RI22-GWS0301	L0601350		1/18/06	
RI22-GWS0501	L0601411		1/19/06	
RI22-GWS0101	L0601411		1/19/06	
RI22-GWS0401	L0601411		1/19/06	
RI22-GWS0601	L0601411		1/19/06	
RI22-GWS0701	L0601411		1/19/06	
RI22-GWS0801	L0601411		1/19/06	
RI22-GWS0801	L0601411		1/20/06	
RI23-GWS0101	L0601411		1/20/06	
RI23-GWS0201	L0601411		1/20/06	
RI23-GWS0301	L0601411		1/20/06	
RI23-GWS0401	L0601411		1/20/06	
RI22-SBS0102	L0601412	M54130	1/19/06	
RI22-SBS0402	L0601412	M54130	1/19/06	
RI22-SBD0402	L0601412	M54130	1/19/06	Duplicate
RI22-SBS0603	L0601412	M54130	1/19/06	
RI22-SBS0601	L0601412	M54130	1/19/06	
RI22-SBS0702	L0601412	M54130	1/19/06	
RI22-SBS0802	L0601412	M54130	1/19/06	
RI23-SBS0102	L0601412	M54130	1/20/06	
RI23-SBS0202	L0601412	M54130	1/20/06	
RI23-SBS0302	L0601412	M54130	1/20/06	
RI23-SBS0402	L0601412	M54130	1/20/06	
RI23-SBS0502	L0601485	M54181	1/23/04	
RI23-SBS0702	L0601485	M54181	1/23/04	
RI23-SBS0802	L0601485	M54181	1/23/04	
RI23-SBD0802	L0601485	M54181	1/23/04	Duplicate
RI23-SBMS0802	L0601485	M54181	1/23/04	Matrix Spike
RI23-SBMSD0802	L0601485	M54181	1/23/04	Matrix Spike Duplicate
RI23-SBS0704	L0601485	M54181	1/23/04	
RI23-SBS0803	L0601485	M54181	1/24/04	
RI23-SBS1002	L0601485	M54181	1/24/04	
Field Sample ID	Kemron SDG	Accutest SDG	Sample Date	Comment

RI23-SBS1012	L0601485	M54181	1/24/04	
RI23-SBS1102	L0601485	M54181	1/24/04	
RI23-SBS0902	L0601485	M54181	1/24/04	
RI23-GWS0501	L0601485		1/23/04	
RI23-GWS0701	L0601485		1/23/04	
RI23-GWS0801	L0601485		1/24/04	
RI23-GWD0801	L0601485		1/24/04	Duplicate
RI23-GWS1001	L0601485		1/24/04	
RI23-GWS1101	L0601485		1/24/04	
RI23-GWS0601	L0601534		1/25/06	
RI22-GWS0901	L0601534		1/26/06	
RI22-GWS1001	L0601534		1/26/06	
RI23-GWS0901	L0601534		1/26/06	
RI23-GWD0901	L0601534		1/26/06	Duplicate
RI23-GWMS0901	L0601534		1/26/06	Matrix Spike
RI23-GWMSD0901	L0601534		1/26/06	Matrix Spike Duplicate
RI24-GWSEW101	L0601534		1/26/06	
RI24-GWSMW301	L0601534		1/26/06	
RI24-GWSMW6S01	L0601534		1/27/06	
RI22-GWSMW101	L0601534		1/27/06	
RI22-SBS0711	L0601534	M54261	1/25/06	
RI23-SBS0602	L0601534	M54261	1/25/06	
RI23-SBS0902	L0601534	M54261	1/25/06	
RI23-SBS0907	L0601534	M54261	1/25/06	
RI23-SBD0907	L0601534	M54261	1/25/06	Duplicate
RI22-SBS1002	L0601534	M54261	1/25/06	
RI22-GWSMW1401	L0602041		1/30/06	
RI23-GWSMW1601	L0602041		1/30/06	
RI23-GWDMW1601	L0602041		1/30/06	Duplicate
RI22-GWSMW801	L0602041		1/30/06	
RI22-GWSMW1501	L0602041		1/30/06	
RI22-GWSMW201	L0602041		1/30/06	
RI23-GWSMW1701	L0602041		1/30/06	
RI23-GWSMW1801	L0602041		1/31/06	
RI24-GWSPIT1	L0602041		1/31/06	

⁻ Accutest STDs only listed for samples with VPH or EPH samples

Data qualifications were completed when necessary in accordance with the guidelines using the following qualifiers:

- U = The target compound was not detected at concentrations greater than the associated quantitation limit;
- J = The reported concentration is considered an estimated value;
- R = Result is rejected and considered unusable.

With the exception of the items discussed below, QC parameters and measurements checked during validation met requirements in the analytical method, validation guidelines, and quality assurance (QA) plan goals. Unless specified below, results are usable without qualification.

2.0 VOLATILE ORGANIC COMPOUNDS ANALYSIS (8260B)

Data were evaluated for the following parameters:

- * Data Completeness
- * Preservation and Technical Holding Times
- * Instrument Tuning
 Initial and Continuing Calibration
 Blank Contamination
 Surrogate Spike Compounds
 Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 Laboratory Control Sample (LCS)
- * Field Duplicate
 Internal Standards
- * Target Compound Quantitation
- * Electronic Evaluation Verification

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory. Data qualifications and interpretations are presented by SDG.

Initial and Continuing Calibration

The data validation guidelines establish minimum response guidelines for target compounds in calibration standard runs. For a subset of VOCs including the ketones (acetone, 4-methyl-2-pentanone, and 2-butanone), acrylonitrile, and 1,2-dibromo-3-chloropropane the response was less than the minimum response in the guidelines. Positive results were qualified estimated (J) and non-detects were qualified rejected (R) based on the guidelines. Specific details are summarized below for each SDG.

L0601411 – The initial calibration associated with all samples in SDG L0601411 had an average relative response factor (RRF) less than the QC limit of 0.05 for acetone (0.039). Acetone detections in all samples were qualified as estimated (J).

The continuing calibration associated with samples RI22-GWS0101, RI22-GWS0401, RI22-GWS0501, RI22-GWS0601, RI22-GWS0701 and RI22-GWS0801 had a percent difference greater than the QC limit of 25 for 1,1,1-trichloroethane (29.6) and 2,2-dichloropropane (36.8). 1,1,1-Trichloroethane and 2,2-dichloropropane were reported as non-detect (U) in samples RI22-GWS0101, RI22-GWS0401, RI22-GWS0501, RI22-GWS0601, RI22-GWS0701 and RI22-GWS0801 and were qualified as estimated (UJ).

L0602041 – The initial calibration associated with all samples in SDG L0602041 had RRFs less than the QC limit of 0.05 for acetone (0.036), acrylonitrile (0.046) and 4-methyl-2-pentanone (0.044). The

^{* =} criteria were met for this parameter

continuing calibration associated with all samples in SDG L0602041 had RRFs less than the QC limit of 0.05 for acetone (0.038), acrylonitrile (0.046) and 4-methyl-2-pentanone (0.043). Acrylonitrile and 4-methyl-2-pentanone were reported as non-detect (U) in all associated samples and were qualified as rejected (R). Acetone was reported as non-detect (U) in samples RI23-GWSMW1601, RI23-GWDMW1601 and RI23-GWSMW1801 and was qualified as rejected (R). Acetone detections in samples RI22-GWSMW1401, RI22-GWSMW1801, RI22-GWSMW1501, RI22-GWSMW201, RI23-GWSMW1701 and RI24-GWSPIT1 were qualified as estimated (J).

L0601412 – The initial calibration associated with samples RI22-SBS0102, RI22-SBS0402, RI22-SBD0402 and RI22-SBS0802 had RRFs less than the QC limit of 0.05 for acetone (0.031), 2-butanone (0.045) and 4-methyl-2-pentanone (0.049). Acetone, 2-butanone and 4-methyl-2-pentanone were reported as non-detect (U) in samples RI22-SBS0102, RI22-SBS0402, RI22-SBD0402 and RI22-SBS0802 and were qualified as rejected (R).

The continuing calibration associated with samples RI22-SBS0102, RI22-SBS0402 and R122-SBD0402 had RRFs less than the QC limit of 0.05 for acetone (0.035) and 2-butanone (0.049). Acetone and 2-butanone were reported as non-detect (U) in samples RI22-SBS0102, RI22-SBS0402 and RI22-SBD0402 and were qualified as rejected (R).

The continuing calibration associated with sample RI22-SBS0802 had RRFs less than the QC limit of 0.05 for acetone (0.036) and 1,2-dibromo-3-chloropropane and percent differences greater than the QC limit of 25 for 1,2-dibromo-3-chloropropane (27.5), naphthalene (53.2), 1,2,3-trichlorobenzene (52.3) and 1,2,4-trichlorobenzene (27.7). Acetone and 1,2-dibromo-3-chloropropane were reported as non-detect (U) in sample RI22-SBS0802 and were qualified as rejected (R). The naphthalene detection in sample RI22-SBS0802 was qualified as estimated (J). 1,2,3-Trichlorobenzene and 1,2,4-trichlorobenzene were reported as non-detect (U) in sample RI22-SBS0802 and were qualified as estimated (UJ).

The continuing calibration associated with samples RI22-SBS0601, RI23-SBS0102, RI23-SBS0202, RI23-SBS0302 and RI23-SBS0402 had percent differences greater than the QC limit of 25 for 1,1,2,2-tetrachloroethane (25.3), 2-butanone (33.6), 1,2-dibromoethane (27.3), dichlorodifluoromethane (25.9), 2-hexanone (31.5), 4-methyl-2-pentanone (25.2) and 1,2,3-trichloropropane (29.3). Results for 1,1,2,2-tetrachloroethane, 2-butanone, 1,2-dibromoethane, dichlorodifluoromethane, 2-hexanone, 4-methyl-2-pentanone and 1,2,3-trichloropropane in samples RI22-SBS0601, RI23-SBS0102, RI23-SBS0202, RI23-SBS0302 and RI23-SBS0402 were qualified as estimated (J/UJ).

L0601534 – The initial calibration associated with samples RI22-SBS0711, RI23-SBS0907, RI23-SBD0907 and RI22-SBS1002 had RRFs less than the QC limit of 0.05 for acetone (0.036), acrylonitrile (0.046) and 4-methyl-2-pentanone (0.045). Acetone, acrylonitrile and 4-methyl-2-pentanone were reported as non-detect (U) in samples RI22-SBS0711, RI23-SBS0907, RI23-SBD0907 and RI22-SBS1002 and were qualified as rejected (R).

The initial calibration associated with samples RI23-GWS0601, RI22-GWS0901, RI22-GWS1001, RI23-GWS0901, RI23-GWD0901, RI24-GWSEW101, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 had RRFs less than the QC limit of 0.05 for acetone (0.031), 2-butanone (0.045) and 4-methyl-2-pentanone (0.049). 4-Methyl-2-pentanone was reported as non-detect (U) in samples RI23-GWS0601, RI22-GWS0901, RI22-GWS1001, RI23-GWS0901, RI23-GWD0901, RI24-GWSEW101, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 and was qualified as rejected (R). 2-Butanone was reported as non-detect (U) in samples RI23-GWS0601, RI22-GWS0901, RI23-GWS0901,

RI23-GWD0901, RI24-GWSEW101, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 and was qualified as rejected (R). Acetone was reported as non-detect (U) in samples RI23-GWS0901, RI23-GWD0901, RI24-GWSEW101, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 and was qualified as rejected (R). The detections of 2-butanone and acetone in sample RI22-GWS1001 were qualified as estimated (J). The detection of acetone in samples RI23-GWS0601 and RI22-GWS0901 were qualified as estimated (J).

The continuing calibration associated with samples RI22-SBS0711, RI23-SBS0907, RI23-SBD0907 and RI22-SBS1002 had RRFs less than the QC limit of 0.05 for acetone (0.037), acrylonitrile (0.047) and 4-methyl-2-pentanone (0.044). Acetone, acrylonitrile and 4-methyl-2-pentanone were reported as non-detect (U) in samples RI22-SBS0711, RI23-SBS0907, RI23-SBD0907 and RI22-SBS1002 and were qualified as rejected (R).

The continuing calibration associated with samples RI23-GWS0601, RI22-GWS0901, RI22-GWS1001, RI23-GWS0901, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 had RRFs less than the QC limit of 0.05 for acetone (0.037) and 2-butanone (0.048). Acetone was reported as non-detect (U) in samples RI23-GWS0901, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 and was qualified as rejected (R). 2-Butanone was reported as non-detect (U) in samples RI23-GWS0601, RI22-GWS0901, RI23-GWS0901, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 and was qualified as rejected (R). Acetone detections in samples RI23-GWS0601, RI22-GWS0901 and RI22-GWS1001 were qualified as estimated (J). The 2-butanone detection in sample RI22-GWS1001 was qualified as estimated (J).

The continuing calibration associated with samples RI23-GWD0901 and RI24-GWSEW101 had RRFs less than the QC limit of 0.05 for acetone (0.032), 2-butanone (0.046) and 4-methyl-2-pentanone (0.049) and a percent difference greater than 25 for 2,2-dichloropropane (30.3). Acetone, 2-butanone and 4-methyl-2-pentanone were reported as non-detect (U) and were qualified as rejected (R). 2,2-Dichloropropane was reported as non-detect (U) in samples RI23-GWD0901 and RI24-GWSEW101 and was qualified as estimated (UJ).

L0601485 - The initial calibration associated with samples RI22-SBS0902 and RI23-SBS1012 had RRFs less than the QC limit of 0.05 for acetone (0.035), acrylonitrile (0.046) and 4-methyl-2-pentanone (0.043). Acetone, acrylonitrile and 4-methyl-2-pentanone were reported as non-detect (U) in samples RI22-SBS0902 and RI23-SBS1012 and were qualified as rejected (R).

The initial calibration associated with samples RI23-GWS0501, RI23-GWS0701, RI23-GWS0801, RI23-GWS1001, RI23-GWD0801, and RI23-GWS1101 had RRFs less than the QC limit of 0.05 for acetone (0.031), 2-butanone (0.045) and 4-methyl-2-pentanone (0.049). 2-butanone and 4-methyl-2-pentanone were reported as non-detect (U) in all samples and were qualified as rejected (R). Acetone was also reported as non-detect (U) in samples RI23-GWS0501 and RI23-GWD0801 and were qualified as rejected (R). Samples RI23-GWS0701, RI23-GWS0801, RI23-GWS1001, and RI23-GWS1101 had positive results for acetone and were qualified as estimated (J).

The continuing calibration associated with sample RI23-GWS1001 had RRFs less than the QC limit of 0.05 for acetone (0.035) and 2-butanone (0.048). The result for 2-butanone in sample RI23-GWS1001was non-detect (U) and was qualified as rejected (R). The result for acetone was positive in sample RI23-GWS1001 and was qualified as estimated (J).

The continuing calibration associated with samples RI23-GWS0501, RI23-GWS0701, RI23-GWS0801, RI23-GWD0801, and RI23-GWS1101 had RRFs less than the QC limit of 0.05 for acetone (0.034), 2-butanone (0.046), and 4-methyl-2-pentanone (0.049). The results for 2-butanone and 4-methyl-2-pentanone were non-detect (U) and were qualified as rejected (R). The results for acetone in samples RI23-GWS0701 and RI23-GWS0801, and RI23-GWS1101 were positive and were qualified as estimated (J). The results for acetone in samples RI23-GWS0501 and RI23-GWD0801 were non-detect (U) and were qualified as rejected (R).

The continuing calibration associated with samples RI23-SBS1012 and RI22-SBS0902 had RRFs less than the QC limit of 0.05 for acetone (0.037) and acrylonitrile (0.047). Acetone and acrylonitrile were reported as non-detect (U) in samples RI23-SBS1012 and RI22-SBS0902 and were qualified as rejected (R).

L0601350 - The initial calibration associated with samples RI22-GWS0301 and RI22-GWS0201 had RRFs less than the QC limit of 0.05 for acetone (0.039). Results for acetone were reported as non-detect (U) in both samples and were qualified as reject (R).

The continuing calibration associated with sample RI22-GWS0201 had an RRF which was less than the QC limit of 0.005 for acetone (0.047). The result for acetone in sample RI22-GWS0201 was non-detect and qualified as rejected (R). In addition, the percent differences for 2,2-dichloropropane (-36.8) and 1,1,1-trichloroethane (-29.6) were greater than the QC limit of 25. Results for 2,2-dichloropropane and 1,1,1-trichloroethane were both non-detect in sample RI22-GWS0201 and were qualified as estimated (UJ).

Blank Evaluations

L0601411 – The target compounds 1,4-dioxane, hexachlorobutadiene, methylene chloride, naphthalene and 1,2,3-trichlorobenzene were observed in the method blanks associated with the samples in SDG L0601411. No detections of 1,4-dioxane, hexachlorobutadiene, methylene chloride, or 1,2,3-trichlorobenzene were reported by the laboratory. The naphthalene detection in sample RI22-GWS0401 was below the validation action level and was qualified as non-detect (U) at the reporting limit.

L0601412 – Blank contamination was observed in the method blank associated with sample RI22-SBS0603 for p-isopropyltoluene. An action level was established at five times the concentration reported in the blank. The p-isopropyltoluene detection in sample RI22-SBS0603 was below the action level and was qualified as non-detect (U) at the reporting limit.

L0601485 - Blank contamination was observed in the method blank associated with samples RI23-SBS0502, RI23-SBS0702, RI23-SBS0802, RI23-SBS0802, RI23-SBS0704, RI23-SBS0803, RI23-SBS1002, RI23-SBS1102 for naphthalene. An action level was established at five times the concentration reported in the blank. Samples RI23-SBS0502 and RI23-SBS0704 had detections for naphthalene that were less than the action limit and were qualified as non-detect (U).

Surrogates

L0601412 – Surrogate percent recoveries were greater than the QC limits (70-130%) for one or more surrogates in samples RI22-SBS0603, RI22-SBS0601 and RI22-SBS0601. All detections in samples RI22-SBS0603, RI22-SBS0702 and RI22-SBS0601 were qualified as estimated (J) and may be biased high..

L0601534 – The percent recovery was greater than the QC limits (70-130%) for surrogate p-bromofluorobenzene (167 %) in sample RI22-SBS1002. All detections in sample RI22-SBS1002 were qualified as estimated (J) and may be biased high.

L0601485 - The percent recovery was greater than the QC limits (70-130%) for surrogate p-bromofluorobenzene (133 %) in sample RI23-GWS1001. The percent recovery for p-bromofluorobenzene (150 %) in sample RI22-SBS0902 was also greater than QC limits. Detections in sample RI23-GWS1001 and RI22-SBS0902 were qualified as estimated (J) and may be biased high.

L0601350 - The percent recovery was greater than the QC limits (70-130%) in sample RI24-SBS0602 for surrogates 1,2-dichloroethane (194 %) and dibromofluoromethane (154 %). In samples RI22-SBS0301 and RI22-SBS0502 DL01 the surrogate p-bromofluorobenzene (175 and 201 %) was greater than the QC limits. The percent recoveries for p-bromofluorobenzene (247 %) and toluene-d8 (148 %) in sample RI22-SBS0502 were also greater than QC limits. Positive detections in samples RI24-SBS0602, RI22-SBS0301, RI22-SBS0502, and RI22-SBS0502 DL01 were qualified as estimated (J) and may be biased high.

Matrix Spike/Matrix Spike Duplicate

L0601534 – The MS/MSD associated with sample RI23-GWS0901 and its field duplicate RI23-GWD0901 had percent recoveries outside the QC limits (70-130%) for n-butylbenzene (147 %), 1,4-dioxane (35 and 168 %), tert-butyl alcohol (48 %), tetrahydrofuran (67 and 69 %), 1,2,4-trimethylbenzene (235 and 41 %) and 1,3,5-trimethylbenzene (159 %), and relative percent differences (RPDs) greater than 30 for 1,4-dioxane (131), tert-butyl alcohol (69), 1,2,4-trimethylbenzene (44) and 1,3,5-trimethylbenzene (30). The detections of n-butylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in samples RI23-GWS0901 and RI23-GWD0901 were qualified as estimated (J). 1,4-Dioxane, tert-butyl alcohol and tetrahydrofuran were reported as non-detect (U) in samples RI23-GWS0901 and RI23-GWD0901 and were qualified as estimated (UJ).

L0601485 - The MS/MSD associated with sample RI23-GWS1001 had percent recoveries outside the QC limits (70-130%) for hexachlorobutadiene (56%), 1,2,3-trichlorobenzene (64%), and 1,2,4-trichlorobenzene (61%). Sample results for hexachlorobutadiene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene were non-detect (U) and were qualified as estimated (UJ).

Laboratory Control Sample

L0602041 – The laboratory control sample (LCS) associated with all samples in SDG L0602041 had percent recoveries below the QC limits (70-130%) for 1,4-dioxane (61 %) and tert-butyl alcohol (69 %). 1,4-Dioxane and tert-butyl alcohol were reported as non-detect (U) in all samples and were qualified as estimated (UJ).

L0601412 – The LCS associated with samples RI22-SBS0102, RI22-SBS0402 and RI22-SBD0402 had percent recoveries below the QC limits (70-130%) for chloromethane (63 %), dichlorodifluoromethane (43 %) and vinyl chloride (69 %). Chloromethane, dichlorodifluoromethane and vinyl chloride were

reported as non-detect (U) in samples RI22-SBS0102, RI22-SBS0402 and RI22-SBD0402 and were qualified as estimated (UJ).

The LCS associated with sample RI22-SBS0802 had percent recoveries below the QC limits for chloromethane (57 %), dichlorodifluoromethane (35 %) and vinyl chloride (51 %). Chloromethane, dichlorodifluoromethane, and vinyl chloride were reported as non-detect (U) in sample RI22-SBS0802 and were qualified as estimated (UJ).

The LCS/LCSD associated with samples RI22-SBS0603 and RI22-SBS0702 had percent recoveries below the QC limits for dichlorodifluoromethane (59 and 60 %). Dichlorodifluoromethane was reported as non-detect (U) in samples RI22-SBS0603 and RI22-SBS0702 and was qualified as estimated (UJ).

L0601534 – The LCS associated with samples RI23-GWS0601, RI22-GWS0901, RI22-GWS1001, RI23-GWS0901, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 had a percent recovery above the QC limits (70-130%) for 2-butanone (131%) and percent recoveries below the QC limits for 1,4-dioxane (63%), tert-butyl alcohol (56%) and tetrahydrofuran (63%). The 2-butanone detection in sample RI22-GWS1001 was qualified as estimated (J). 1,4-Dioxane, tert-butyl alcohol and tetrahydrofuran were reported as non-detect (U) in samples RI23-GWS0601, RI22-GWS0901, RI22-GWS1001, RI23-GWS0901, RI24-GWSMW301, RI24-GWSMW6S01 and RI22-GWSMW101 and were qualified as estimated (UJ).

The LCS associated with samples RI23-GWD0901 and RI24-GWSEW101 had percent recoveries below the QC limits for 1,4-dioxane (44 %), tert-butyl alcohol (50 %) and tetrahydrofuran (65 %). 1,4-Dioxane, tert-butyl alcohol and tetrahydrofuran were reported as non-detect (U) in samples RI23-GWD0901 and RI24-GWSEW101 and were qualified as estimated (UJ).

L0601350 - The LCS/LCSD associated with samples RI24-SBS0102, RI24-SBS0202, RI24-SBS0302, RI24-SBS0403, RI24-SBS0503, RI24-SBS0602, RI24-SBS0702, RI22-SBS0202, RI22-SBS0301, and RI22-SBS0502 had a percent recovery below the QC limits (70-130%) for dichlorodifluormethane (59 and 60) and relative percent differences greater than the QC limit (30) for tert-butyl alcohol (31) and propionitrile (31). Results for these three compounds were non-detect (U) in all samples and were qualified as estimated (UJ).

Internal Standards

L0601412 – Internal standard fluorobenzene was below the lower QC limit in sample RI22-SBS0601. All compounds that were quantified using internal standard fluorobenzene were reported as non-detect (U) in sample RI22-SBS0601 and were qualified as estimated (UJ).

L0601350 – All three internal standards, 1,4-dichlorobenzene-d4, chlorobenzene-d5, and fluorobenzene, were below the lower QC limits in sample RI24-SBS0602. All compounds in sample RI24-SBS0602 were qualified as estimated (J/UJ).

The internal standard 1,4-dichlorobenzene-d4 was below the lower QC limit in sample RI22-SBS0502. All compounds that were quantified using internal standard 1,4-dichlorobenzene-d4 in sample RI22-SBS0502 were qualified as estimated (J/UJ).

3.0 SEMIVOLATILE ORGANIC COMPOUNDS ANALYSIS (8270C and 8011)

Data were evaluated for the following parameters:

- * Data Completeness
- * Preservation and Technical Holding Times
- * Instrument Tuning
- * Initial and Continuing Calibration
- * Blank Contamination
- * Surrogate Spike Compounds
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD) Laboratory Control Sample (LCS)
- * Field Duplicate
- * Internal Standards
- * Target Compound Quantitation
- * Electronic Evaluation Verification
 - * = criteria were met for this parameter

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory.

Laboratory Control Sample

L0601534 – The LCS associated with samples RI24-GWSEW101, RI24-GWSMW301 and RI24-GWSMW6S01 had a percent recovery below the QC limits (40-140%) for aniline (28 %). Aniline was reported as non-detect (U) in samples RI24-GWSEW101, RI24-GWSMW301 and RI24-GWSMW6S01 and was qualified as estimated (UJ).

4.0 PESTICIDES (8081)

Data were evaluated for the following parameters:

- * Data Completeness
- * Preservation and Technical Holding Times
- * Initial and Continuing Calibration
- * Blank Contamination
- * Surrogate Spike Compounds
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- * Laboratory Control Sample (LCS)
- * Field Duplicate
- * Target Compound Quantitation
- * Electronic Evaluation Verification

* = criteria were met for this parameter

Results are determined to be usable as reported by the laboratory.

5.0 VOLATILE PETROLEUM HYDROCARBONS (MAVPH)

Data were evaluated for the following parameters:

- * Data Completeness
- * Preservation and Technical Holding Times
- * Instrument Tuning
- * Initial and Continuing Calibration
- * Blank Contamination
- * Surrogate Spike Compounds
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- * Laboratory Control Sample (LCS)
- * Field Duplicate
- * Internal Standards
- * Target Compound Quantitation
- * Electronic Evaluation Verification

All criteria are met for this method. The data is usable as reported by the laboratory.

6.0 EXTRACTABLE PETROLEUM HYDROCARBONS (MAEPH)

Data were evaluated for the following parameters:

- * Data Completeness
- * Preservation and Technical Holding Times
- * Instrument Tuning
- * Initial and Continuing Calibration
 - **Blank Contamination**
 - Surrogate Spike Compounds
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD) Laboratory Control Sample (LCS)
- * Field Duplicate
- * Internal Standards
- * Target Compound Quantitation
- * Electronic Evaluation Verification

^{* =} criteria were met for this parameter

* = criteria were met for this parameter

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory.

Blank Contamination

M54181 – The C9-C18 Aliphatics range is reported in the method blank (8530 μ g/kg). An action limit was established at five times the concentration reported in the blank. The results for C9-C18 Aliphatics in samples RI23-SBS0502, RI23-SBS0702, RI23-SBS0802, RI23-SBS0802, RI23-SBS0704, RI23-SBS0803 and, RI23-SBS1012 are less than the action limit and were qualified non-detect.

Surrogate Spike Compounds

M54261 – The percent recovery for 1-chlorooctadecane in samples RI23-SBS0902 (38), RI23-SBS0907 (36), and RI23-SBD0907 (34) are less than the lower QC control limit of 40. Sample results for aliphatic hydrocarbons were qualified estimated (J and UJ).

M54130 – The percent recovery for 1-chlorooctadecane in sample RI22-SBS0802 (36) is less than the lower QC control limit of 40. The result for aliphatic hydrocarbons were qualified estimated (J).

Laboratory Control Sample

M54130 – The LCSD percent recovery for naphthalene (38) is less than the lower QC control limit of 40. The results for naphthalene were qualified estimated (J/UJ) and are potentially biased low.

7.0 INORGANICS (6010B, 6020 and 7471A)

Analysis for elements was completed using Method 6010B, Method 6020, and Method 7471A.

Data were evaluated for the following parameters:

- * Data Completeness
- * Preservation and Technical Holding Times
- * Initial and Continuing Calibration
 Blank Contamination
 Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- * Laboratory Control Sample (LCS)
 Field Duplicate
 Laboratory Duplicate
 - Serial Dilution
- t f C Cl 1
- * Interference Check Standard
- * Target Compound Quantitation
- * Electronic Evaluation Verification

* = criteria were met for this parameter

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory.

Blank Contamination

L0601350 – Blank contamination was observed in the initial and continuing calibration blanks associated with all soil samples for antimony. Action levels were established at five times the blank concentrations and were compared to sample raw data. The antimony detection in sample RI24-SBS0102 was below the action level and was qualified as non-detect (U).

Field Duplicate

L0602041 – The RPD between sample RI23-GWSMW1601 and its field duplicate RI23-GWSMW1601 was greater than the QC limit of 30 for total lead (63). Total lead detections in all samples in SDG L0602041 were qualified as estimated (J).

L0601534 – The RPD between sample RI23-GWS0901 and its field duplicate RI23-GWD0901 was greater than the QC limit of 30 for total lead (200). Total lead results in all water samples were qualified as estimated (J/UJ).

L0601485 – The RPD between sample RI23-GWS0801 and its field duplicate RI23-GWD0801 was greater than the QC limit of 30 for total lead (62). Total lead results in samples RI23-GWS0501, RI23-GWS0701, RI23-GWS0801, RI23-GWD0801, RI23-GWS1001, and RI23-GWS1101 were positive and were qualified as estimated (J).

Laboratory Duplicate

L0601412 – The RPD between sample RI22-SBS0402 and its laboratory duplicate was greater than the QC limit of 35 for total lead (45). Total lead detections in all samples in SDG L0601412 were qualified as estimated (J).

L0601350 – The QC limit of +/- the reporting limit (0.0255) was exceeded between sample RI24-SBS0503 and its laboratory duplicate for thallium. Thallium detections in all soil samples were qualified as estimated (J).

Matrix Spike/Matrix Spike Duplicates

L0601534 – The MS/MSD associated with sample RI23-GWS0901 and its field duplicate RI23-GWD0901 had a percent recovery above the QC limits (75-125%) for total lead (126 %). Total lead detections in all water samples were qualified as estimated (J).

L0601350 – The MS associated with sample RI24-SBS0102 had a percent recovery below the QC limits (75-125%) for antimony (17 %). Antimony was reported or qualified as non-detect (U) in all associated soil samples and was qualified as estimated (J) and may be biased low.

Validation Completed by: Brad LaForest - NRCC-EAC Reviewed by: Chris Ricardi - NRCC-EAC March 22, 2006

REFERENCES:

Kemron, 2005. 94th Regional Readiness Command Quality Assurance Project Plan for the Rhode Island Sites; Contract # W911SO-04-F0017; USAEC Aberdeen Proving Ground, MD; August 2005.

U.S. Environmental Protection Agency (USEPA), 1996. "Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II," Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.

U.S. Environmental Protection Agency (USEPA), 1988. "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses;" Hazardous Site Evaluation Division; November, 1988.

U.S. Environmental Protection Agency (USEPA), 1989. "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses;" Hazardous Site Evaluation Division; February, 1989.

APPENDIX G-2

DATA VALIDATION SUMMARY 2007 ANALYSES

Data Validation Summary May and June 2007 SAMPLING EVENT KEMRON USARC GFPR Lincoln, Rhode Island

1.0 INTRODUCTION

Fifteen soil samples and seventy-seven aqueous samples were collected from May 8th through June 27th, 2007 at the Kemron USARC GFPR sites in Lincoln, Rhode Island. Sites include the AMSA 68(G) Focused RI Site 04 Potential Past Disposal Area, Site 05 Former Gasoline UST, and Site 13 Septic System. Soil and water samples were collected for analyses determined for each location based on historical use and potential contamination. Soil samples were analyzed for one or more of the following parameters:

- Volatile organic compounds (VOC) by Method 8260B
- Diesel Range Organies (DRO) by Method 8015M
- Gasoline Range Organics (GRO) by Method 8015M
- Total Organic Carbon (TOC) by Method 9060

Aqueous samples were analyzed for one or more of the following parameters:

- VOCs by Method 8260B
- Total and dissolved lead by Method 6010B

All analyses were performed by ESS Laboratory Cranston, Rhode Island.

A Tier II validation was completed for all samples. For ten percent of samples a Tier III data validation was performed for VOC, and metals analyses. A chemist review was performed on the DRO, GRO, and TOC analyses. The data package was validated using Region I EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (USEPA, 1996), Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (USEPA, 1988), Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (USEPA, 1989) and the Kemron USARC Rhode Island GFPR Quality Assurance Project Plan (Kemron, 2005).

The following samples and sample delivery groups (SDGs) are included in this data evaluation:

Field Sample ID	ESS SDG	Sample Date	Comment
Trip Blank	0705130	5/8/2007	
RI 23 GWPS 0303	0705130	5.8/2007	•
RI 23 GWPS 0403	0705130	5.8/2007	
RI 23 GWPS 0603	0705130	5-8/2007	
RI 22 GPS 0501	0705130	518,2007	
RI 23 GWPS 0203	0705130	5/8/2007	
RI 23 GWPS 0103	0705130	5/8/2007	
RI 22 GPS 0601	0705130	5.8/2007	

RI 22 GPD 0101	0005130	5.8 2007	Duplicate
Field Sample ID	ESS SDG	Sample Date	Comment
R1 22 GPS 0101	0705130	5.8(2007)	
R1 22 GPS 0201	0705130	5.8/2007	
RI22 GPS0401	0705157	5.9 2007	
R122-GPS0301	0705157	5.9/2007	••
RI23/GPWS0607	0705187	5.9.2007	
R123-GPWS0407	0705157	5.912007	
RI23-GPWS0503	0705157	5.9/2007	
RI23-GPWS0703	0705157	5/9/2007	•
RI23-GPWS0307	0705157	5.9 2007	
R123-GPWS0707	0705157	5.9:2007	
RI23-GPWS0507	0705157	5.9:2007	
R122-GPS0701	0705157	5.9.2007	
RI23-GPWS0207	0705157	5/9/2007	
Trip Blank	0705177	5/10/2007	
Trip Blank	0705178	5/10/2007	•
RI23-GPWS0107	0705177	5/10/2007	
RI22-SSS1100	0705178	5/10/2007	
RI22-SSS1201	0705178	5/10/2007	· · · · · · · · · · · · · · · · · · ·
R122-SSS1301	0705178	5/10/2007	
R122-SSS1401	0705178	5/10/2007	
R122-SSD1501	0705178	5/10/2007	
RI22-SSMS1501	0705178	5/10/2007	
RI22-SSS1501	0705178	5-10/2007	
RI22-SSS1600	0705178	5/10/2007	· · · · · · · · · · · · · · · · · · ·
RI23-GPWS0907	0705177	5 10/2007	
RI23-GPWS0807	0705177_	5/10/2007	
Trip Blank	0705209	5/11/2007	
RI23-GPWS1007	0705208	5/11/2007	
RI22-SSS1701	0705209	5/11/2007	
RI22-SSS1800	0705209	5/11/2007	
R122-SSS1901	0705209	5/11/2007	
RI22-SSS2000	0705209	5/11/2007	
RI23-GPWS0115	0705208	5/11/2007	
RI23-GPWS0903	0705208	5/11/2007	
RI23-GPWS0215	0705208	5/11/2007	
Trip Blank	0705223	5/14/2007	
RI23-GPWS1107	0705223	5/14/2007	
RI23-GPWS0803	0705223	5/14/2007	
RI23-GPWS1115	0705223	5/14/2007	
RI23-GPWS0415	0705223	5/14/2007	
Rt23-GPWS0815	0705223	5/14/2007	
Trip Blank	0705252	5 15/2007	
R123-GPWS1103	0705252	5/15/2007	
RI23-GPWS1315	0705252	5/15/2007	

EB-1	0705252	5 15 2007	
RI23-GPWS1205	0705252	5 15 2007	
Field Sample ID	ESS SDG	Sample Date	Comment
R123-GPWD1215	0705252	5 15 2007	Duplicate
RI23-GPWMS1215	0705252	5 15 2007	·
R123-GPWS1215	0705252	5 15 2007	
Trip Blank	0705276	5:16:2007	
R123-GPW1405	0705276	5 16-2007	
R123-MWS0901	0705276	5 16/2007	
Septic-1	0705276	5 16:2007	
R123-GPWS1415	0705276	5:16:2007	•
Trip Blank	0705290	5 17 2007	
R122-GPS0114	0705290	5/17/2007	
R122-GPS0214	0705290	5:17.2007	
R123-GPWS1515	0705290	5:17/2007	
R122-MWS14D01	0705314	5/18/2007	
R122-MWS20D01	0705484	5 31 2007	•
R123-SBS10D15	0705483	5/31/2007	
R123-SBS18D15	0705483	5-31/2007	
RI23-SBS19D07	0706009	6-1/2007	
RI23-GWSMW15D02	0706457	6 25 2007	Duplicate
TIR-1	0706457	6:26:2007	
RI22-GWSMW202	0706457	6/26/2007	· · · · · · · · · · · · · · · · · · ·
RI23-GW8MW1502	0706457	6/26/2007	•
R123-GWSMW1602	0706457	6'26'2007	
RI23-GWSMW16D02	0706457	6 26/2007	
R123-GWSMW1002	0706457	6/26/2007	
RI22-GWSMW102	0706457	6/26/2007	• •
RI23-GWSMW10D02	0706457	6/26/2007	
RI23-GWSMW14D02	0706457	6.26/2007	
RI23-GWDMW20D02	0706495	6'26'2007	
R123-GWSMW20D02	0706495	6/26/2007	
RI22-GWSMW2102	0706495	6/26/2007	•
R122-GWSM2002	0706495	6/26/2007	
RI23-GWSMW21D02	0706495	6/26/2007	
TR-2	0706495	6:27:2007	
TB-3	0706497	6/27/2007	
RI22-GWSMW802	0706495	6/27/2007	:
R122-GWSMW1402	0706495	6:27/2007	
RI23-GWSMW17D02	0706495	6/27/2007	
R123-GWSMW1902	0706495	6:27.2007	•
RI23-GWSMW1702	0706495	6 27/2007	
RI23-GWSMW27D02	0706495	6 27/2007	
RI23-GWSMW26D02	0706495	6:27, 2007	
RI23-GWSMW2702	0706495	6.27/2007	·· ·· · · · · · · · · · · · · · · · ·
RI23-GWSMW1802	0706495	6 27, 2007	•
	0700475	O = 1, 2007	

RI23-GWSMW18D02	0706495	6.22.2007	
RI23-GWSMW902	0706495	6/27/2007	
RI23-GWSMW2302	0706495	6.27.2007	
Field Sample ID	ESS SDG	Sample Date	Comment
R123-GWSMW24D02	0006497	6/27/2007	
R123-GWSMW22D02	0706497	6 27 2007	
RI23-GWSMW2202	0706497	6 27 2007	

Data qualifications were completed when necessary in accordance with the guidelines using the following qualifiers:

- U = The target compound was not detected at concentrations greater than the associated quantitation limit;
- J = The reported concentration is considered an estimated value;
- R = Result is rejected and considered unusable.

With the exception of the items discussed below, quality control (QC) parameters and measurements checked during validation met requirements in the analytical method, validation guidelines, and quality assurance (QA) plan goals. Unless specified below, results are usable without qualification.

2.0 VOLATILE ORGANIC COMPOUNDS ANALYSIS (8260B)

Data were evaluated for the following parameters:

- Data Completeness
- Preservation and Technical Holding Times
- Instrument Tuning

Initial and Continuing Calibration

Blank Contamination

Surrogate Spike Compounds

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Laboratory Control Sample (LCS)

Field Duplicate

- Internal Standards
 - Target Compound Quantitation
- Electronic Evaluation Verification
 - * criteria were met for this parameter

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory. Data qualifications and interpretations are presented by SDG.

Initial and Continuing Calibration

The data validation guidelines establish minimum response guidelines for target compounds in calibration standard runs. For a subset of VOCs including the ketones (acctone, 4-methyl-2-pentanone, and 2-butanone), 1.4-dioxane, 1,2-dibromo-3-chloropropane, and tetrahydrofuran the response was less than the minimum response in the guidelines. Positive results were qualified estimated (*J*) and non-detects were rejected (R) based on the guidelines. Specific details are summarized below for each SDG.

0705130 – In the initial calibration associated with samples R1 22 GPS 0601, R1 23 GWPS 0403, R1 22 GPS 0201, R1 22 GPS 0501, R1 23 GWPS 0303, and R1 23 GWPS 0603 the average relative response factor (RRF) for 2-butanone (0.0174), acetone (0.0136), tetrahydrofuran (0.0410), and 1.4-dioxane (0.00098) are less than the QC limit of 0.050. The percent relative standard deviation (RSD) for 1.2-dibromo-3-chloropropane (35.68) exceeds the QC limit of 30. The results for 2-butanone, tetrahydrofuran, and 1.4-dioxane in the associated samples are non-detect and were rejected (R). The result for acetone in sample R1 23 GWPS 0403 was qualified estimated (J). The remaining acetone results are non-detect and were rejected (R). The result for 1,2-dibromo-3-chloropropane in the associated samples are non-detect and were qualified estimated (UJ).

In the initial calibration associated with samples RI 22 GPS 0101, RI 22 GPD 0101, RI 23 GWPS 0103, and RI 23 GWPS 0203 the RRF for 1,4-dioxane (0.000563), 2-butanone (0.012), and acetone (0.0119) are less than the QC limit of 0.050. The result for 1,4-dioxane, 2-butanone, and acetone in the associated samples are non-detect and were rejected (R).

In the continuing calibration associated with all samples in SDG 0705130, the percent difference for 1,4-dioxane (45) and tetrahydrofuran (25.8) exceed the QC limit of 25. The RRF for acetone (0.0122, 0.0128, and 0.0140), 1,4-dioxane (0.00568 and 0.000701), 2-butanone (0.0169), and tetrahydrofuran (0.0435) are less than the QC limit of 0.050. The results for acetone, 1,4-dioxane, 2-butanone, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0705157 – In the initial calibration associated with all samples in SDG 0705157, the RRF for 1,4-dioxane (0.0009), 2-butanone (0.0174), acetone (0.0136), and tetrahydrofuran (0.041) are less than the QC limit of 0.050. The RSD for 1,2-dibromo-3-chloropropane (36) exceeds the QC limit of 30. The sample results for 1,4-dioxane, and tetrahydrofuran are non-detect and were rejected (R). The reported detection for 2-butanone and acetone in sample RI23-GPWS0407 was qualified estimated (J). The remaining associated sample results for acetone and 2-butanone are non-detect and were rejected (R). The associated sample results for 1,2-dibromo-3-chloropropane are non-detect and were qualified estimated (J).

In the continuing calibration associated with all samples in SDG 0705157, the RRF for 1.4-dioxane (0.00038 and 0.00072), 2-butanone (0.0177 and 0.0155), acetone (0.0133 and 0.011), and tetrahydrofuran (0.0469 and 0.0410) are less than the QC limit of 0.050. The results for 1.4-dioxane, 2-butanone, acetone, and tetrahydrofuran were qualified previously under the initial calibration criteria.

6705177 – In the initial calibration associated with all samples in SDG 0705177, the RRF for 1,4-dioxane (0.00098), 2-butanone (0.0174), acctone (0.0136), and tetrahydrofuran (0.041) are less than the QC limit of 0.050. The RSD for 1,2-dibromo-3-chloropropane (36) exceeds the QC limit of 30. The sample results for 1,4-dioxane, 2-butanone, acctone, and tetrahydrofuran are non-detect and were rejected (R). The sample results for 1,2-dibromo-3-chloropropane are non-detect and were qualified estimated (J).

In the continuing calibration associated with all samples in SDG 0705177, the RRF for 1.4-dioxane (0.00042). 2-butanone (0.0177), acctone (0.0122), and tetrahydrofuran (0.0486) are less than the QC limit of 0.050. The results for 1.4-dioxane, 2-butanone, acctone, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0705178 – In the initial calibration associated with all samples in SDG 0705178, the RRF for 1,2-dibromo-3-chloropropane (0.0474). 1.4-dioxane (0.0005), 2-butanone (0.009), 4-methyl-2-pentanone (0.041), acetone (0.0061), chloroethane (0.034), and tetrahydrofuran (0.025) are less than the QC limit of 0.050. The RSD for 1,2,4-trichlorobenzene (47), 1,2-dibromo-3-chloropropane (42), and n-butylbenzene (38) exceed the QC limit of 30. The sample results for 1,2-dibromo-3-chloropropane, 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chloroethane, and tetrahydrofuran are non-detect and were rejected (R). The sample results for 1,2,4-trichlorobenzene, and n-butylbenzene are non-detect and were qualified estimated (UJ).

In the continuing calibration associated with all samples in SDG 0705178, the RRF for 1,4-dioxane (0.00066, 0.00050), 2-butanone (0.0097, 0.0096), 4-methyl-2-pentanone (0.043, 0.00435), acetone (0.0058, 0.0059), chloroethane (0.034, 0.031), and tetrahydrofuran (0.026, 0.024) are less than the QC limit of 0.050. The percent difference for 1,2-dichloroethane (27), 1,4-dioxane (28.4), and carbon tetrachloride (27) exceed the QC limit of 25. The sample results for 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chloroethane, and tetrahydrofuran were qualified previously under the initial calibration criteria. The sample results for 1,2-dichloroethane, and carbon tetrachloride are non-detect and were qualified estimated (UJ).

0705208 -- In the initial calibration associated with all samples in SDG 0705208, the RRF for 1,4-dioxane (0.0009), 2-butanone (0.0174), acetone (0.0136), and tetrahydrofuran (0.041) are less than the QC limit of 0.050. The RSD for 1,2-dibromo-3-chloropropane (36) exceeds the QC limit of 30. The sample results for 1,4-dioxane, 2-butanone, acetone, and tetrahydrofuran are non-detect and were rejected (R). The sample results for 1,2-dibromo-3-chloropropane are non-detect and were qualified estimated (J).

In the continuing calibration associated with all samples in SDG 0705208, the RRF for 1,4-dioxane (0.00042), 2-butanone (0.0177), acctone (0.0122), and tetrahydrofuran (0.0486) are less than the QC limit of 0.050. The results for 1,4-dioxane, 2-butanone, acctone, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0705209 In the initial calibration associated with all samples in SDG 0705209, the RRF for 1,2-dibromo-3-chloropropane (0.047), 1,4-dioxane (0.00054), 2-butanone (0.009), 4-methyl-2-pentanone (0.041), acetone (0.00061), chloroethane (0.034), and tetrahydrofuran (0.0255) are less than the QC limit of 0.050. The RSD for 1,2-dibromo-3-chloropropane (42) exceeds the QC limit of 30. The sample results for 1,2-dibromo-3-chloropropane, 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chloroethane, and tetrahydrofuran are non-detect and were rejected (R).

In the continuing calibration associated with all samples in SDG 0705209, the RRF for 1,2-dibromo-3-chloropropane (0.047), 1,4-dioxane (0.00059), 2-butanone (0.0096), 4-methyl-2-pentanone (0.043), acetone (0.00059), chloroethane (0.032), and tetrahydrofuran (0.0248) are less than the QC limit of 0.050. The sample results for 1,2-dibromo-3-chloropropane, 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chloroethane, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0705223 – In the initial calibration associated with all samples in SDG 0705223, the RRF for 1.4-dioxane (0.00098), 2-butanone (0.0174), acetone (0.0136), and tetrahydrofuran (0.041) are less than the QC limit of 0.050. The RSD for 1.2-dibromo-3-chloropropane (36) exceeds the QC limit of 30. The sample results for 1.4-dioxane, 2-butanone, acetone, and tetrahydrofuran are non-detect and were rejected (R). The sample results for 1.2-dibromo-3-chloropropane are non-detect and were qualified estimated (J).

In the continuing calibration associated with all samples in SDG 0705223, the RRF for 1,4-dioxane (0.00042), 2-butanone (0.0177), acetone (0.0122), and tetrahydrofuran (0.0486) are less than the QC limit of 0.050. The results for 1.4-dioxane, 2-butanone, acetone, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0705252 In the initial calibration associated with all samples in SDG 0705252, the RRF for 1,4-dioxane (0.00056), 2-butanone (0.012), and acetone (0.0119) are less than the QC limit of 0.050. The sample results for 1.4-dioxane, 2-butanone, and acetone are non-detect and were rejected (R).

In the continuing calibration associated with all samples in SDG 0705252, the RRF for 1,4-dioxane (0.00051 and 0.00086), 2-butanone (0.0139 and 0.0184), and acetone (0.0131 and 0.0126) are less than the QC limit of 0.050. The results for 1,4-dioxane, 2-butanone, and acetone were qualified previously under the initial calibration criteria.

0705276 In the initial calibration associated with all samples in SDG 0705276, the RRF for 1,4-dioxane (0.00098), 2-butanone (0.017), acetone (0.0136), and tetrahydrofuran (0.041) are less than the QC limit of 0.050. The RSD for 1,2-dibrono-3-chloropropane (36) exceeds the QC limit of 30. The sample results for 1,4-dioxane, 2-butanone, acetone, and tetrahydrofuran are non-detect and were rejected (R). The sample results for 1,2-dibrono-3-chloropropane are non-detect and were qualified estimated (UJ).

In the continuing calibration associated with all samples in SDG 0705276, the RRF for 1,4-dioxane (0.0011, .00095), 2-butanone (0.018, 0.017), acetone (0.016, 0.0134), and tetrahydrofuran (0.049) are less than the QC limit of 0.050. The percent difference for tetrahydrofuran (30) and trichlorofluoromethane (42) exceeds the QC limit of 25. The results for 1,4-dioxane, 2-butanone, acetone, and tetrahydrofuran were qualified previously under the initial calibration criteria. The result for trichlorofluoromethane in associated samples RI23-GPW1405, and RI23-GPWS1415 are non-detect and were qualified estimated (UJ).

0705290 – In the initial calibration associated with all samples in SDG 0705290, the RRF for 1,4-dioxane (0.00056), 2-butanone (0.012), and acetone (0.011) are less than the QC limit of 0.050. The sample results for 1.4-dioxane, 2-butanone, and acetone are non-detect and were rejected (R).

In the continuing calibration associated with all samples in SDG 0705290, the RRF for 1,4-dioxane (0.00037), 2-butanone (0.012), acctone (0.011), and tetrahydrofuran (0.043) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (34) exceeds the QC limit of 25. The results for 1,4-dioxane, 2-butanone, and acctone were qualified previously under the initial calibration criteria. The results for tetrahydrofuran are non-detect and were rejected (R).

0705314 - In the initial calibration associated with all samples in SDG 0705314, the RRF for 1,4-dioxane (0.00056), 2-butanone (0.012), and acctone (0.011) are less than the QC limit of 0.050. The sample result for 1,4-dioxane, 2-butanone, and acctone is non-detect and was rejected (R).

In the continuing calibration associated with all samples in SDG 0705314, the RRF for 1,4-dioxane (0.00056), 2-butanone (0.012), acctone (0.011), and tetrahydrofuran (0.043) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (34) exceeds the QC limit of 25. The result for 1,4-dioxane, 2-butanone, and acctone was qualified previously under the initial calibration criteria. The result for tetrahydrofuran is non-detect and was rejected (R).

0705483 In the initial calibration associated with all samples in SDG 0705483, the RRF for 1,2-dibromo-3-chloropropane (0.0497), 1,4-dioxane (0.0005), 2-butanone (0.009), 4-methyl-2-pentanone (0.041), acetone (0.0057), chloroethane (0.037), and tetrahydrofuran (0.025) are less than the QC limit of 0.050. The RSD for 1,2-4-trichlorobenzene (36), 1,2-dibromo-3-chloropropane (36), and naphthalene (32) exceed the QC limit of 30. The sample results for 1,2-dibromo-3-chloropropane, 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chloroethane, and tetrahydrofuran are non-detect and were rejected (R). The sample results for 1,2,4-trichlorobenzene, and naphthalene are non-detect and were qualified estimated (UJ).

In the continuing calibration associated with all samples in SDG 0705483, the RRF for 1,4-dioxane (0.00036), 2-butanone (0.0089), 4-methyl-2-pentanone (0.040), acetone (0.0061), chloroethane (0.036), and tetrahydrofuran (0.025) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (35) exceeds the QC limit of 25. The sample results for 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chloroethane, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0705484 · In the initial calibration associated with all samples in SDG 0705484, the RRF for 1,4-dioxane (0.00098), 2-butanone (0.017), acetone (0.0136), and tetrahydrofuran (0.041) are less than the QC limit of 0.050. The RSD for 1,2-dibromo-3-chloropropane (36) exceeds the QC limit of 30. The sample result for 1,4-dioxane, 2-butanone, acetone, and tetrahydrofuran is non-detect and was rejected (R). The sample result for 1,2-dibromo-3-chloropropane is non-detect and was qualified estimated (UJ).

In the continuing calibration associated with all samples in SDG 0705484, the RRF for 1,4-dioxane (0.00025), 2-butanone (0.016), acetone (0.011), and tetrahydrofuran (0.038) are less than the QC limit of 0.050. The sample result for 1,4-dioxane, 2-butanone, acetone, and tetrahydrofuran was qualified previously under the initial calibration criteria.

0706009 — In the initial calibration associated with all samples in SDG 0706009, the RRF for 1,2-dibromo-3-chloropropane (0.0497), 1,4-dioxane (0.0005), 2-butanone (0.009), 4-methyl-2-pentanone (0.041), acctone (0.0057), chlorocthane (0.037), and tetrahydrofuran (0.025) are less than the QC limit of 0.050. The RSD for 1,2,4-trichlorobenzene (36), 1,2-dibromo-3-chloropropane (36), and naphthalene (32) exceed the QC limit of 30. The sample result for 1,2-dibromo-3-chloropropane, 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acetone, chlorocthane, and tetrahydrofuran is non-detect and was rejected (R). The sample result for 1,2,4-trichlorobenzene is non-detect and was qualified estimated (UJ). The sample result for naphthalene was qualified estimated (J).

In the continuing calibration associated with all samples in SDG 0706009, the RRF for 1,4-dioxane (0.00036), 2-butanone (0.0089), 4-methyl-2-pentanone (0.040), acctone (0.0061), chloroethane (0.036), and tetrahydrofuran (0.025) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (35) exceeds the QC limit of 25. The sample results for 1,4-dioxane, 2-butanone, 4-methyl-2-pentanone, acctone, chloroethane, and tetrahydrofuran were qualified previously under the initial calibration criteria.

0706457 In the initial calibration associated with all samples in SDG 0706457, the RRF for 1.4-dioxane (0.030), 2-butanone (0.013), acetone (0.011) and tetrahydrofuran (0.035) are less than the QC limit of 0.050. The sample results for 1.4-dioxane, 2-butanone, acetone, and tetrahydrofuran are non-detect and were rejected (R).

In the continuing calibration associated with all samples in SDG 0706457, the RRF for 1,4-dioxane (0.0013, 0.0014, and 0.0014), 2-butanone (0.013, 0.013, and 0.013), acctone (0.010, 0.010, and 0.011), and tetrahydrofuran (0.033, 0.033, and 0.033) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (96, 95, and 95), and chloromethane (45, 53, and 37) exceeds the QC limit of 25. The results for 1,4-dioxane, 2-butanone, acetone and tetrahydrofuran were qualified previously under the initial calibration criteria. The results for chloromethane are non-detect and were qualified estimated (UJ).

0706495 - In the initial calibration associated with all samples in SDG 0706495, the RRF for 1,4-dioxane (0.0039). 2-butanone (0.010), acctone (0.0088) and tetrahydrofuran (0.027) are less than the QC limit of 0.050. The RSD for 1,4-dioxane (150), and bromoform (35) exceed the QC limit of 30. The sample results for 1,4-dioxane, 2-butanone, acctone, and tetrahydrofuran are non-detect and were rejected (R). The results for bromoform are non-detect and were qualified estimated (UJ).

In the continuing calibration associated with all samples in SDG 0706495, the RRF for 1,4-dioxane (0.0008, .0008, .0016, and .0014), 2-butanone (0.011, 0.012, 0.013, and 0.013), acetone (0.009, 0.010, 0.011, and 0.011), and tetrahydrofuran (0.029, 0.034, 0.032, and 0.033) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (41, 35, 120, and 75), and chloromethane (35, and 28) exceeds the QC limit of 25. The results for 1,4-dioxane, 2-butanone, acetone and tetrahydrofuran were qualified previously under the initial calibration criteria. Results for chloromethane in samples RI23-GWSMW2702, RI23-GWSMW1702, RI23-GWSMW18D02, RI22-GWSMW1402, RI23-GWSMW19D02, RI23-GWSMW19D02, RI23-GWSMW23D02 were qualified estimated (J/UJ).

0706497 -- In the initial calibration associated with all samples in SDG 0706497, the RRF for 1,4-dioxane (0.0030), 2-butanone (0.013), acctone (0.011) and tetrahydrofuran (0.035) are less than the QC limit of 0.050. The RSD for 1,4-dioxane (160) exceeds the QC limit of 30. The sample results for 1,4-dioxane, 2-butanone, acctone, and tetrahydrofuran are non-detect and were rejected (R).

In the continuing calibration associated with all samples in SDG 0706497, the RRF for 1,4-dioxane (0.0014), 2-butanone (0.013), acctone (0.011), and tetrahydrofuran (0.033) are less than the QC limit of 0.050. The percent difference for 1,4-dioxane (95) exceeds the QC limit of 25. The results for 1,4-dioxane, 2-butanone, acctone and tetrahydrofuran were qualified previously under the initial calibration criteria.

Blank Evaluations

0705209 - Blank contamination was observed in the trip blank associated with all samples in SDG 0705209 for methylene chloride. An action limit was established at ten times the reported methylene chloride concentration. The result for methylene chloride in associated samples is non-detect; no further action required.

0705483 Blank contamination was observed in the method blank associated with all samples in SDG 0705483 for methylene chloride. An action limit was established at ten times the reported methylene chloride concentration. The result for methylene chloride in associated samples are less than the action limit and were qualified non-detect (U) at the reporting limit.

0706009 – Blank contamination was observed in the method blank associated with all samples in SDG 0706009 for methylene chloride. An action limit was established at ten times the reported methylene chloride concentration. The result for methylene chloride is non-detect; no further action required.

Surrogates

0705177. The percent recovery for the surrogate toluene-d8 in sample RI23-GPWS0807 (188) exceeds the upper QC limit of 130. Reported detections in sample RI23-GPWS0807 were qualified estimated (J) and are potentially biased high.

0705208 – The percent recovery for the surrogate toluene-d8 in sample RI23-GPWS0115 (181) exceeds the upper QC limit of 130. Reported detections in sample RI23-GPWS0115 were qualified estimated (J) and are potentially biased high.

0706457 The percent recovery for toluene-d8 (174) in sample R123-GWSMW1002 exceeds the upper QC limit of 130. Reported detections in sample R123-GWSMW1002 were qualified estimated (J) and are potentially biased high.

0706495 – The percent recovery for toluene-d8 (191) in sample RI23-GWSMW18D02 exceeds the upper QC limit of 130. Reported detections from the undiluted analysis, in sample RI23-GWSMW18D02 were qualified estimated (J) and are potentially biased high.

Matrix Spike/Matrix Spike Duplicate

0706495 -- The MS percent recovery for 1,4-dioxane (0) is less than the lower QC limit of 70. The MSD percent recovery for 1,4-dioxane (143), naphthalene (168), and bromomethane (137) exceed the upper QC limit of 130. The MS/MSD relative percent difference (RPD) for 1,2,3-trichlorobenzene (30), 1,4-dioxane (200), and naphthalene (31) exceeds the QC limit of 20. The result for bromomethane in the unspiked samples RI23-GWSMW20D02 and RI23-GWDMW20D02 is non-detect; no further action required. The result for 1,2,3-trichlorobenzene and naphthalene in the unspiked samples RI23-GWSMW20D02 and RI23-GWDMW20D02 is non-detect and was qualified estimated (UJ). The result for 1,4-dioxane was qualified previously under the initial calibration criteria.

0706497 The MS/MSD percent recoveries for 1,4-dioxane (8 and 10), and chloromethane (58 and 66) are less than the lower QC limit of 70. The MSD percent recovery for bromomethane (142) exceeds the upper QC limit of 130. The result for bromomethane in the unspiked sample R123-GWSMW24D02 is non-detect; no further action required. The result for 1,4-dioxane was qualified previously under the initial calibration criteria.

Laboratory Control Sample

- **0705130** The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) percent recovery for 1.4-dioxane (350 and 220) exceeds the upper QC limit of 130. Results for 1,4-dioxane were qualified previously under the initial calibration criteria.
- 0705157 The LCS percent recovery for 1,4-dioxane (68) is less than the lower QC limit of 70. The results for 1,4-dioxane were qualified previously under the initial calibration criteria.
- **0705177** The LCS percent recovery for 1.4-dioxane (66) is less than the lower QC limit of 70. The results for 1.4-dioxane were qualified previously under the initial calibration criteria.
- **0705178**. The LCS/LCSD percent recoveries for 1,4-dioxane (144,139, and 136) and acetone (131 and 138) exceed the upper QC limit of 130. The results for 1,4-dioxane and acetone were qualified previously under the initial calibration criteria.
- **0705209** The LCS percent recovery for 1,4-dioxane (132) exceeds the QC limit of 130. The result for 1,4-dioxane in associated samples are non-detect; no further action required.
- **0705252** The LCS/LCSD percent recovery for 1,4-dioxane (350 and 222) exceeds the upper QC limit of 130. The results for 1,4-dioxanewere qualified previously under the initial calibration criteria.
- 0705276 The LCS/LCSD percent recovery for 1,4-dioxane (302 and 177), 2-butanone (133), and acetone (133) exceeds the upper QC limit of 130. The result for 1,4-dioxane, 2-butanone, and acetone were qualified previously under the initial calibration criteria.
- **0705290** The LCS/LCSD percent recovery for 1,4-dioxane (361and 212) exceeds the upper QC limit of 130. The results for 1,4-dioxane were qualified previously under the initial calibration criteria.
- 0705314 The LCS/LCSD percent recovery for 1,4-dioxane (361and 212) exceeds the upper QC limit of 130. The results for 1,4-dioxane were qualified previously under the initial calibration criteria.
- 0705483 The LCS/LCSD percent recovery for dichlorodifluoromethane (133 and 132) exceeds the upper QC limit of 130. The result for dichlorodifluoromethane in the associated samples are non-detect; no further action required.
- 0705484 The LCS percent recovery for hexachlorobutadiene (135) exceeds the upper QC limit of 130. The result for hexachlorobutadiene in the associated sample is non-detect; no further action required.
- **0706009** The LCS/LCSD percent recovery for dichlorodifluoromethane (133 and 132) exceeds the upper QC limit of 130. The result for dichlorodifluoromethane in the associated sample is non-detect; no further action required.
- 0706457 The LCS/LCSD percent recovery for bromomethane (138, 136, and 131) exceeds the upper QC limit of 130. The result for bromomethane in the associated samples are non-detect; no further action required. The LCS/LCSD percent recoveries for 1,4-dioxane (10, 11, 9, 10, 9 and 9), chloromethane (52, 56, 55, 55, 63, and 65), and dichlorodifluoromethane (65 and 62) are less than the lower QC limit of 70.

The results for 1,4-dioxane were qualified previously under the initial calibration criteria. The results for obloromethane were qualified previously under the continuing calibration criteria.

The results for dichlorodifluoromethane in associated samples R123-GWSMW15D02, R122-GWSMW202, R123-GWSMW1502, R123-GWSMW1602, R123-GWSMW16D02, R123-GWSMW1002 are non-detect and were qualified estimated (UJ).

0706495 – The LCS/LCSD percent recovery for 1,4-dioxane (211, 177, and 144), acctone (139, 145, and 151) exceeds the upper QC limit of 130. The LCS/LCSD percent recoveries for chloromethane (64 and 67) are less than the lower QC limit of 70. The results for 1,4-dioxane and acctone were qualified previously under the initial calibration criteria. The results for chloromethane were qualified previously under the continuing calibration criteria.

0706497 - The LCS/LCSD percent recovery for 1,4-dioxane (9, and 9), and chloromethane (63, 65, and 58) are less than the lower QC limit of 70. The LCS percent recovery for bromomethane (131) exceeds the upper QC limit of 130. The result for bromomethane in the associated samples is non-detect; no further action required. The result for chloromethane in associated samples is non-detect and was qualified estimated (UJ). The results for 1,4-dioxane were qualified previously under the continuing calibration criteria.

Field Duplicate

0705252 The field duplicate RPD for benzene (54), ethylbenzene (200), o-xylene (200), see butylbenzene (31), m/p-xylene (38), and total xylene (200) exceeds the QC limit of 30. The result for benzene, ethylbenzene, o-xylene, see butylbenzene, m/p-xylene, and total xylene in the duplicate sample set RI23-GPWS1215 and RI23-GPWD1215 were qualified estimated (J/UJ).

Target Compound Quantitation

0705157 The result for isopropyl benzene and n-propylbenzene in sample RI23GWPS0103 exceeds the instrument calibration range in the undiluted analysis. The analytes were non-detect in the dilution analysis. The undiluted results are reported with an "E" qualifier. The "E" was removed in the final data set and the result for isopropyl benzene and n-propylbenzene in sample RI23GWPS0103 was qualified estimated (J).

0705177 • The result for 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, iso-propylbenzene, propylbenzene, and styrene in sample RI23-GPWS0107 exceed the instrument calibration range in the undiluted analysis. The analytes were non-detect in the dilution analysis. The undiluted results are reported with an "E" qualifier. The "E" was removed in the final data set and the result for 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, iso-propylbenzene, propylbenzene, and styrene in sample RI23-GPWS0107 was qualified estimated (J).

0706495 - The result for n-propylbenzene in sample R123-GWSMW17D02 exceeded the instrument calibration range in the undiluted analysis. The analyte was non-detect in the dilution analysis. The undiluted result is reported with an "E" qualifier. The "E" was removed in the final data set and the result for n-propylbenzene in sample R123-GWSMW17D02 was qualified estimated (J).

3.0 DIESEL RANGE ORGANICS (80(5M))

Data were evaluated for the following parameters:

- Data Completeness
- * Preservation and Technical Holding Times
- Instrument Tuning
- Initial and Continuing Calibration Blank Contamination
- Surrogate Spike Compounds
- Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Laboratory Control Sample (LCS)
- * Field Duplicate
- Internal Standards
- * Target Compound Quantitation
- Electronic Evaluation Verification

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory.

Blank Contamination

0705178 • In the method blank associated with all samples in SDG 0705178, DRO is reported. The chromatograms for the method blank and samples were reviewed. The area for the blank contamination does not match the analyte areas for the samples. Based upon professional judgment, no further action required.

4.0 GASOLINE RANGE ORGANICS (8015M)

Data were evaluated for the following parameters:

- Data Completeness
- Preservation and Technical Holding Times
- Instrument Tuning
- Initial and Continuing Calibration

Blank Contamination

Surrogate Spike Compounds

- Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Laboratory Control Sample (LCS)
 - Field Duplicate
- Internal Standards

^{* =} criteria were met for this parameter

- Target Compound Quantitation
- Electronic Evaluation Verification

With the exception of the following items discussed below, results are determined to be usable as reported by the laboratory.

Blank Evaluations

0705178 Blank contamination was observed in the trip blank associated with all samples in SDG 0705178 for GRO. The chromatograms for the method blank and samples were reviewed. The area for the blank contamination does not match the analyte areas for the samples. Based upon professional judgment, no further action required.

Surrogates

0705178 • The percent recovery for the surrogate trifluorotoluene in sample R122-SSS1401 (147) exceeds the QC limit of 130. The result for GRO in sample R122-SSS1401 was qualified estimated (J) and is potentially biased high.

Field Duplicate

0705178 The field duplicate RPD (84) for the field duplicate set exceeds the QC limit of 50. The result for GRO in samples RI22-SSS1501, RI22-SSD1501, and RI22-SSMS1501 was qualified estimated (J).

5.0 INORGANICS (6010B)

Analysis for elements was completed using Method 6010B, Method 6020, and Method 7471A.

Data were evaluated for the following parameters:

- Data Completeness
- Preservation and Technical Holding Times
- Initial and Continuing Calibration
- Blank Contamination
- Matrix Spike/Matrix Spike Duplicate (MS/MSD).
- Laboratory Control Sample (LCS)
- Field Duplicate
- Laboratory Duplicate
- Serial Dilution
- Interference Check Standard
- * Target Compound Quantitation
- Electronic Evaluation Verification
 - * criteria were met for this parameter

14 of 15

^{* =} criteria were met for this parameter

Results are determined to be usable as reported by the laboratory.

6.0 TOTAL ORGANIC CARBON (9060)

Data were evaluated for the following parameters:

- Data Completeness
- Preservation and Technical Holding Times
- Initial and Continuing Calibration
- Blank Contamination
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Laboratory Control Sample (LCS)
- Field Duplicate
- Laboratory Duplicate
- Target Compound Quantitation
- Electronic Evaluation Verification

Results are determined to be usable as reported by the laboratory.

REFERENCES:

Kemion, 2005. 94th Regional Readiness Command Quality Assurance Project Plan for the Rhode Island Sites: Contract # W911SO-04-F0017; USAEC Aberdeen Proving Ground, MD: August 2005.

G.S. Environmental Protection Agency (USEPA), 1996, "Region I. EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II." Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.

U.S. Environmental Protection Agency (USEPA), 1988, "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses;" Hazardous Site Evaluation Division; November, 1988.

U.S. Environmental Protection Agency (USEPA), 1989, "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses:" Hazardous Site Evaluation Division; February, 1989.

Validation Completed by: Wolfgang D Calicchio

August 23, 2007

Reviewed by:

Moffy Dolchio

^{* =} criteria were met for this parameter

APPENDIX H 2007 SURVEY DATA

25 May 2007

Mr. Rod Pendleton MACTEC Engineering & Consulting, Inc. 511 Congress Street Portland, ME

RE: Survey Report

U.S. Army Reserve, AMSA 68 (G)

Lincoln, RI

Dear Mr. Pendleton:

The survey for the above referenced site was performed using GPS, Total Station and Differential leveling techniques.

The horizontal GPS component utilized a Trimble 4800, dual frequency system. We used the systems RTK (real time kinematic) function. The base was placed on a known NGS Station identified as LW1765 and we checked the system accuracy by collecting data at two nearby NGS station, LW1769 & LW0418. The resulting coordinates were within 0.11' of their record location (positional accuracy required is ± 1 foot). We then collected coordinate values for traverse points 100 through 103. A Topcon 300 series total station, positioned at these traverse points, was used to collect the actual well locations and the other features shown on the plan. The vertical component utilized a Wild compensating level, model # NAO. We used NGS station LW1765 as a starting point and checked into NGS station LW 1766 within 0.015 feet. NGS values for these stations are reported in NAVD 88. Corpswin conversion software was used to convert NAVD 88 values to NGVD values. The converted values were then spot checked using Vertcom software with results being within 0.01 feet. We completed a level run holding the value for station LW 1765 which closed with no error. During our level run we placed temporary bench marks (TBM) on utility poles at the site. These TBM's were used to collect elevation data for the wells. The level run for the well data resulted in an error of closure of 0.002 feet per setup (turning points) for ten setups. This error was distributed through the setups to determine the final elevations (vertical accuracy required is ± 0.01 feet).

Please refer to the data summary sheet (excel format) for the well positions, elevations and pertinent notes. Please refer to the plan for the well positions relative to the building and fences.

Sincerely,

Michael A. Coleman Professional Land Surveyor, RI License #1902

100 Hallet Street • Boston, MA 02124 Tel: 617-265-7777 Fax: 617-265-0478 Email: survey@aseccorp.com

JN 1587 - U.S.	ARMY RE	SERVE CEN	ITER AMSA	68(G)				
PREPARED FOR MA	ACTEC ENGINE	ERING AND CO	NSULTING					
DESCRIPTION	CAD PT#	NORTHING	EASTING		ELEVATION		NOTES	
				GROUND	TOP CASING	TOP PVC		
EW-01	1067	305969	332245	448.4	450.08	449.11	4" ST. CASE/2" P\	٧C
EW-03	1070	305945	332131	447.4	449.63	448.82	4" ST. CASE/2" P\	٧C
GP-01	1057	306108	332123					
GP-02	1008	306155	332050					
GP-03	1002	306247	331881					
GP-04	1001	306373	332034					
GP-05	1003	306197	332043					
GP-06	1004	306162	332097					
GP-07	1000	306450	332075					
GPW-01	1040	306039	332047					
GPW-02	1042	306022	332049					
GPW-03	1044	305983	332071					
GPW-04	1043	306009	332065					
GPW-05	1047	306024	332080					
GPW-06	1045	306009	332082					
GPW-07	1046		332101					
GPW-08	1041	306033	332033					
GPW-09	1048	306002	332030					
GPW-10	1023	306060	332038					
GPW-11	1039	306034	332053					
GPW-12	1022	306051	332019					
GPW-13	1024	306058	332056					
GPW-14	1075		332013					
MW-1	1016	306149	332001	447.9	449.60	449.20	4" ST. CASE/2" P\	
MW-2	1052	306078	332105	448.0	450.02	449.78	4" ST. CASE/2" P\	
MW-3	1068		332326	447.4	449.88	449.83	4" ST. CASE/2" P\	
MW-4	1030			448.1	450.33	450.19	4" ST. CASE/2" P\	
MW-5	1015		331942	448.7	450.41	450.15	4" ST. CASE/2" P\	
MW-6B	1066		332230	448.4	449.89	449.63	4" ST. CASE/2" P\	
MW-6D	1065			448.4	450.07	449.55	4" ST. CASE/2" P\	
MW-6S	1064		·	448.6	449.29	449.15	4" ST. CASE/2" P\	
MW-7	1069		332218	447.8	449.77	449.58	4" ST. CASE/2" P\	
MW-8	1020			447.9	449.85	449.67	4" ST. CASE/2" P\	
MW-9	1049		332073	447.8	447.79	447.60	4" ST. CASE/2" P	
MW-10	1021	306079	·	447.8	447.82	447.79	4" ST. CASE/2" P	
MW-11	1035		331842	447.3	449.75	449.47	4" ST. CASE/2" P\	٧C
MW-12	1031	305851	332000	447.1	NO CASING	447.04	2" PVC	
MW-13	1071	305845	332074	448.0	450.66	449.91	4" ST. CASE/2" P	
MW-14	1019			447.6	449.98	449.67	2" ST. CASE/1" P\	٧C
MW-14D	1077	306128	·	447.3	NO CASING	447.19	1" PVC	
MW-15	1051	306090		447.6	450.14	449.98	2" ST. CASE/1" P\	
MW-16	1017			447.8	447.80	447.72	2" ST. CASE/1" P\	
MW-17	1050		332081	447.7	447.74	447.63	2" ST. CASE/1" P\	
MW-18	1037	306056		448.4	450.73	450.42	2" ST. CASE/1" P\	
MW-19	1038		332052	448.0	447.99	447.78	4" ST. CASE/1" P	
MW-20	1009		332003	447.3	447.24	447.02	5" ST. CASE/1" P\	VC
MW-20D	1076		·	447.7	NO CASING	447.51	1" PVC	100
MW-21	1014			447.0	447.05	446.80	4" ST. CASE/1" P	
MW-22	1058			446.9	446.82	446.61	4" ST. CASE/1" P\	vC
SS-11	1018							
SS-12	1006		·					
SS-13	1053		332077					
SS-14	1056		·					
SS-15	1063		332120					
SS-16	1062		·					
SS-17	1007	306142	332049					
SS-18	1005							
SS-19	1054		332097					
SS-20	1055	306094	332116					

20 June 2007

Mr. Rod Pendleton MACTEC Engineering & Consulting, Inc. 511 Congress Street Portland, ME

RE: Survey Report

U.S. Army Reserve, AMSA 68 (G)

Lincoln, RI

Dear Mr. Pendleton:

The survey for the above referenced site was performed using GPS, Total Station and Differential leveling techniques.

The horizontal GPS component utilized a Trimble 4800, dual frequency system. We used the systems RTK (real time kinematic) function. The base was placed on a known NGS Station identified as LW1765 and we checked the system accuracy by collecting data at two nearby NGS station, LW1769 & LW0418. The resulting coordinates were within 0.11' of their record location (positional accuracy required is ± 1 foot). We then collected coordinate values for traverse points 100 through 103. A Topcon 300 series total station, positioned at these traverse points, was used to collect the actual well locations and the other features shown on the plan. The vertical component utilized a Wild compensating level, model # NAO. We used NGS station LW1765 as a starting point and checked into NGS station LW 1766 within 0.015 feet. NGS values for these stations are reported in NAVD 88. Corpswin conversion software was used to convert NAVD 88 values to NGVD values. The converted values were then spot checked using Vertcom software with results being within 0.01 feet. We completed a level run holding the value for station LW 1765 which closed with no error. During our level run we placed temporary bench marks (TBM) on utility poles at the site. These TBM's were used to collect elevation data for the wells. The level run for the well data resulted in an error of closure of 0.002 feet per setup (turning points) for ten setups. This error was distributed through the setups to determine the final elevations (vertical accuracy required is ± 0.01 feet).

Please refer to the data summary sheet (excel format) for the well positions, elevations and pertinent notes. Please refer to the plan for the well positions relative to the building and fences.

On June 19, 2007 additional survey work was performed to locate 12 monitoring wells. Horizontal and vertical control set during our initial visit was utilized for the new wells and the reported results are within the allowable accuracies. We also placed another temporary benchmark (TBM #3) on an existing hydrant for future use. Please refer to the revised data summary sheet (excel format) for the well positions, elevations and pertinent notes.

Sincerely,

Michael A. Coleman Professional Land Surveyor, RI License #1902

100 Hallet Street • Boston, MA 02124 Tel: 617-265-7777 Fax: 617-265-0478

Email: survey@aseccorp.com

EW-01 106 EW-03 107 GP-01 105 GP-02 100 GP-02 100 GP-03 100 GP-04 100 GP-05 100 GP-06 100 GP-07 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-03 104 GPW-05 104 GPW-05 104 GPW-06 104 GPW-08 104 GPW-09 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-6B 106 MW-6B 106 MW-6B 106 MW-6B 106 MW-6B 106 MW-10 102 MW-10 102 MW-10 102 MW-10 102 MW-10 103 MW-10 104 MW-10 105 MW-10 106 MW-10 107 MW-15 106 MW-15 106 MW-15 107 MW-15 108 MW-16 109 MW-17 106 MW-18 103 MW-19 103 MW-19 103 MW-19 103 MW-19 103 MW-19 103 MW-20 106 MW-20 107 MW-21 107 MW-21 107 MW-19 103 MW-19 103 MW-19 103 MW-21 107 MW-22 105 MW-21 107 MW-22 105 MW-21 107 MW-19 103 MW-19 103 MW-19 103 MW-20 106 MW-20 107 MW-21 107 MW-22 105 MW-22 105 MW-22 105 MW-22 105 MW-23 108 MW-24D 107 MW-25D 108 MW-27 108 MW-29 108 MW-29 109 MW-20 107 MW-21 107 MW-22 105 MW-21 107 MW-22 105 MW-22 105 MW-23 108 MW-24D 107 MW-25D 108 MW-27 108 MW-27 108 MW-27 108 MW-27 108 MW-27 108 MW-29 109 MW-29 109 MW-21 109 MW-21 109 MW-22 105 MW-22 105 MW-22 105 MW-22 105 MW-23 108 MW-24D 107 MW-25D 108 MW-27 108 MW-28 10	NCINEEDING VI		NSULTING	68(G)				
EW-03 GP-01 GP-01 GP-02 GP-03 GP-03 GP-04 GP-05 GP-05 GP-06 GP-07 GP-07 GPW-01 GPW-01 GPW-02 GPW-03 GPW-04 GPW-05 GPW-05 GPW-05 GPW-06 GPW-07 GPW-08 GPW-08 GPW-10 GPW-10 GPW-12 GPW-12 GPW-13 GPW-12 GPW-13 GPW-14 MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-6 MW-6 MW-6 MW-6 MW-6 MW-7 MW-10 MW-1		RVEY J		RED) ELEVATION GROUND	TOP CASING	TOP PVC	NOTES	
EW-03	1067 30	5969	332245	448.4	450.08	449.11	4" ST. CASE/2" P	/C
GP-01 105 GP-02 100 GP-03 100 GP-04 100 GP-05 100 GP-06 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 M		5945	332131	447.4	449.63	448.82	4" ST. CASE/2" P	
GP-02 100 GP-03 100 GP-04 100 GP-05 100 GP-06 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-7 106 MW-10 102 MW-10 102 MW-11 103 MW-12 103 MW-15 105 <td< td=""><td></td><td>6108</td><td>332123</td><td></td><td></td><td></td><td></td><td></td></td<>		6108	332123					
GP-03 100 GP-04 100 GP-05 100 GP-06 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-7 106 MW-10 102 MW-10 102 MW-11 103 MW-12 103 MW-15 105 MW-16 101 <td< td=""><td></td><td>6155</td><td>332050</td><td></td><td></td><td></td><td></td><td></td></td<>		6155	332050					
GP-04 100 GP-05 100 GP-06 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 106 MW-6B 106 MW-7 106 MW-7 106 MW-10 102 MW-10 102 MW-10 102 MW-10 103 MW-10 103 MW-10 103 MW-10 103 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
GP-05 100 GP-06 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-7 106 MW-10 102 MW-10 102 MW-10 102 MW-10 103 MW-10 103 MW-10 103 MW-10 103 MW-10 103 <td< td=""><td></td><td>6247</td><td>331881</td><td></td><td></td><td></td><td></td><td></td></td<>		6247	331881					
GP-06 100 GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-7 106 MW-8 102 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105		6373	332034					
GP-07 100 GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-19 103 M	1003 30	6197	332043					
GPW-01 104 GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-7 106 MW-10 102 MW-10 102 MW-10 102 MW-10 103 MW-10 103 MW-10 103 MW-10 103 MW-10 103 MW-10 103 MW-10 103	1004 30	6162	332097					
GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 MW-10 102 MW-10 102 MW-10 102 MW-10 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 M	1000 30	6450	332075					
GPW-02 104 GPW-03 104 GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 MW-10 102 MW-10 102 MW-10 102 MW-10 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 M	1040 30	6039	332047					
GPW-03 GPW-04 GPW-05 GPW-06 GPW-06 GPW-07 GPW-08 GPW-09 GPW-10 GPW-11 GPW-12 GPW-13 GPW-13 GPW-14 MW-1 MW-2 MW-3 MW-4 MW-5 MW-6B MW-6D MW-6S MW-7 MW-10 MW-1		6022	332049					
GPW-04 104 GPW-05 104 GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-2 105 MW-3 106 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-19 103 MW-19 103 MW-19 103 MW-20<		5983	332071					
GPW-05 GPW-06 GPW-07 GPW-08 GPW-09 GPW-09 GPW-10 GPW-11 GPW-12 GPW-13 GPW-14 MW-1 MW-2 MW-2 MW-3 MW-4 MW-5 MW-6B MW-6B MW-6B MW-6B MW-7 MW-8 MW-9 MW-10 MW-10 MW-10 MW-10 MW-10 MW-10 MW-10 MW-10 MW-14 MW-14 MW-15 MW-15 MW-15 MW-15 MW-16 MW-17 MW-16 MW-17 MW-16 MW-17 MW-18 MW-19 MW-19 MW-10 MW-20 MW-2								
GPW-06 104 GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6B 106 MW-6B 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-20 <td></td> <td>6009</td> <td>332065</td> <td></td> <td></td> <td></td> <td> </td> <td></td>		6009	332065				 	
GPW-07 104 GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-3 106 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-22 <td></td> <td>6024</td> <td>332080</td> <td></td> <td></td> <td></td> <td></td> <td></td>		6024	332080					
GPW-08 104 GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-3 106 MW-5 101 MW-6B 106 MW-7 106 MW-8 102 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 107 MW-22 105 MW-21 107 MW-22		6009	332082					
GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 107 MW-22 105 MW-21	1046 30	6013	332101					
GPW-09 104 GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 107 MW-22 105 MW-21	1041 30	6033	332033					
GPW-10 102 GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 MW-10 103 MW-11 103 MW-12 103 MW-14 101 MW-15 105 MW-14 101 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 101 MW-22		6002	332030					
GPW-11 103 GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 105 MW-24D 107 MW-25		6060	332038				1	
GPW-12 102 GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-15 105 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 106 MW-23 108 MW-24D 107 MW-27D 108 MW-27D		6034	332053				 	
GPW-13 102 GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 103 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14 101 MW-15 105 MW-16 101 MW-16 103 MW-17 105 MW-18 103 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 105 MW-24D 107 MW-26D								
GPW-14 107 MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6D 106 MW-6S 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 102 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14 101 MW-15 105 MW-15 105 MW-16 101 MW-17 105 MW-18 103 MW-17 105 MW-18 103 MW-19 103 MW-20 100 MW-21 107 MW-22 105 MW-21 107 MW-22		6051	332019				1	
MW-1 101 MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6C 106 MW-7 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14 101 MW-15 105 MW-15 108 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 105 MW-24D 107 MW-24D 107 MW-26D 108 MW-27D		6058	332056					
MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 108 MW-15 108 MW-16 101 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21D 107 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 107 MW-24D 107 MW-27	1075 30	6034	332013					
MW-2 105 MW-3 106 MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 108 MW-15 108 MW-16 101 MW-16 101 MW-17 105 MW-18 103 MW-19 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21D 107 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 107 MW-24D 107 MW-27	1016 30	6149	332001	447.9	449.60	449.20	4" ST. CASE/2" P	√C
MW-3 MW-4 MW-5 MW-6B MW-6B MW-6D MW-6S MW-7 MW-8 MW-7 MW-8 MW-9 MW-10 MW-10 MW-11 MW-12 MW-13 MW-14 MW-14 MW-14D MW-15 MW-15 MW-15 MW-15 MW-16 MW-16 MW-17 MW-18 MW-17 MW-18 MW-19 MW-19 MW-19 MW-19 MW-19 MW-19 MW-20 MW-20 MW-20 MW-20 MW-20 MW-21 M		6078	332105	448.0	450.02	449.78	4" ST. CASE/2" P	
MW-4 103 MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16 103 MW-17 105 MW-18 103 MW-18D 108 MW-18D 108 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 107 MW-24D 107 MW-27 108 MW-27		5907	332326	447.4	449.88	449.83	4" ST. CASE/2" P	
MW-5 101 MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 108 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-18 103 MW-18D 103 MW-18D 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 107 MW-24D 107 MW-24D 107 MW-27D 108 M		5690		447.4	450.33	450.19	4" ST. CASE/2" P	
MW-6B 106 MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10 103 MW-10 103 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 108 MW-15 108 MW-16 101 MW-16 108 MW-17 105 MW-18 103 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21D 107 MW-22 105 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 MW-27D 108 MW-27D 108 MW-2								
MW-6D 106 MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-15 105 MW-15D 108 MW-16 101 MW-17 105 MW-17D 108 MW-17D 108 MW-18 103 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-22 105 MW-21 107 MW-22 105 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 MW-27D 108 SS-11 100		6051	331942	448.7	450.41	450.15	4" ST. CASE/2" P	
MW-6S 106 MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15 108 MW-16 101 MW-16 103 MW-17 105 MW-18 103 MW-18 103 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-22 105 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		5977	332230		449.89	449.63	4" ST. CASE/2" P	
MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15 108 MW-15D 108 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-18D 108 MW-20 100 MW-20 107 MW-21 107 MW-21 107 MW-22 105 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 108 MW-27 108 MW-27D 108 MW-27D 108 SS-11 101 SS-12 100	1065 30	5979	332226	448.4	450.07	449.55	4" ST. CASE/2" P	√C
MW-7 106 MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15 108 MW-15D 108 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-18D 108 MW-20 100 MW-20 107 MW-21 107 MW-21 107 MW-22 105 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 108 MW-27 108 MW-27D 108 MW-27D 108 SS-11 101 SS-12 100	1064 30	5985	332221	448.6	449.29	449.15	4" ST. CASE/2" P	/C
MW-8 102 MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18 103 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-21 105 MW-22 105 MW-24D 107 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		5901			449.77	449.58	4" ST. CASE/2" P	
MW-9 104 MW-10 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17D 108 MW-17D 108 MW-18 103 MW-18D 103 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-21 107 MW-22 105 MW-23 108 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6118		447.9	449.85	449.67	4" ST. CASE/2" P	
MW-10D 102 MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-21 107 MW-22 105 MW-23 108 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6029	332073	447.8	447.79	447.60	4" ST. CASE/2" P	
MW-10D 108 MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15 108 MW-15D 108 MW-16D 108 MW-17 105 MW-17D 108 MW-17D 108 MW-18D 108 MW-18D 103 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-21 107 MW-22 105 MW-23 108 MW-24D 107 MW-24D 107 MW-26D 108 MW-27D 108 MW-27D 108 SS-11 101 SS-12 100								
MW-11 103 MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-21D 107 MW-21D 107 MW-22D 108 MW-23 108 MW-24D 107 MW-24D 107 MW-27 108 MW-27D 108 MW-27D 108 SS-11 101 SS-12 100		6079	332060		447.82	447.79	4" ST. CASE/2" P	
MW-12 103 MW-13 107 MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17D 108 MW-17D 108 MW-18D 103 MW-19 103 MW-20 100 MW-21D 107 MW-21D 107 MW-22D 108 MW-23 108 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6078	332062		447.88	447.60	4" ST. CASE/1" P	
MW-13 107 MW-14 101 MW-14D 107 MW-15 108 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 103 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-21 105 MW-22 105 MW-23 108 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		5937	331842		449.75	449.47	4" ST. CASE/2" P	/C
MW-13 107 MW-14 101 MW-14D 107 MW-15 108 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 103 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-21 105 MW-22 105 MW-23 108 MW-24D 107 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100	1031 30	5851	332000	447.1	NO CASING	447.04	2" PVC	
MW-14 101 MW-14D 107 MW-15 105 MW-15D 108 MW-16D 108 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-21 101 MW-21 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		5845			450.66	449.91	4" ST. CASE/2" P	VC
MW-14D 107 MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-21D 107 MW-21D 107 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6126	332039		449.98	449.67	2" ST. CASE/1" P	
MW-15 105 MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 107 MW-22 108 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6128			NO CASING	447.19	1" PVC	
MW-15D 108 MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21D 107 MW-21D 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100							 	/C
MW-16 101 MW-16D 108 MW-17 105 MW-17D 108 MW-18D 108 MW-18D 100 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 105 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6090			450.14	449.98	2" ST. CASE/1" P	
MW-16D 108 MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21D 107 MW-21D 107 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		88090	332084		447.69	447.60	4" ST. CASE/1" P	
MW-17 105 MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6109			447.80	447.72	2" ST. CASE/1" P	
MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6108	332017	447.9	447.84	447.45	4" ST. CASE/1" P	VC
MW-17D 108 MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100	1050 30	6062	332081	447.7	447.74	447.63	2" ST. CASE/1" P	/C
MW-18 103 MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 105 MW-22 108 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100	1085	6060	332083	447.8	447.75	447.33	4" ST. CASE/1" P	٧C
MW-18D 108 MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 105 MW-22 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6056	332058		450.73	450.42	2" ST. CASE/1" P	
MW-19 103 MW-20 100 MW-20D 107 MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6053	332058		448.29	448.05	4" ST. CASE/1" P	
MW-20 100 MW-20D 107 MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 SS-11 101 SS-12 100		6039	332052	448.0	447.99	447.78	4" ST. CASE/1" P	
MW-20D 107 MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100								
MW-21 101 MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6197	332003	447.3	447.24	447.02	5" ST. CASE/1" P	v C
MW-21D 107 MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6195	332008	447.7	NO CASING	447.51	1" PVC	
MW-22 105 MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6160			447.05	446.80	4" ST. CASE/1" P	
MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6159	332057	446.9	446.91	446.66	4" ST. CASE/1" P	
MW-22D 108 MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100	1058 30	6110	332123	446.9	446.82	446.61	4" ST. CASE/1" P	√C
MW-23 108 MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6109	332126	446.8	446.84	446.73	4" ST. CASE/1" P	٧C
MW-24D 107 MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6032	332035		448.62	448.38	4" ST. CASE/1" P	
MW-26D 108 MW-27 108 MW-27D 108 SS-11 101 SS-12 100		6161		447.5	447.49	447.36	3" ST. CASE/1" P	
MW-27 108 MW-27D 108 SS-11 101 SS-12 100							3" ST. CASE/1" P	
MW-27D 108 SS-11 101 SS-12 100		6053	332019		448.77	448.43		
SS-11 101 SS-12 100		5981			447.39	447.25	3" ST. CASE/1" P	
SS-12 100		5983		447.6	447.58	447.44	4" ST. CASE/1" P	VC
		6140	332020					
	1006 30	6126	332052					
00-10		6107	332077					
		6084	332109				†	
							+	1
		6069	332120				 	
		6064	332102					
		6142	332049					
SS-18 100	1005 30	6124	332073					
SS-19 105	1054 30	6107	332097					1
		6094	332116					

APPENDIX I HYDROGEOLOGIC CALCULATIONS

HYDROGEOLOGIC CALCULATIONS USARC Lincoln, RI

Groundwater Elevation data from May 23, 2007

HORIZONTAL GRADIENT CALCULATIONS - SHALLOW OVERBURDEN

May 23, 2007 Shallow Overburden Groundwater Elevation Data

Flow direction to the Northwest from EW-03 (GW Elev. 446.14) to MW-17 (GW Elev. 445.46)

GW Elev. (ft, MSL)

EW-03 446.14 MW-17 445.46

Approx. Dist. Between points 65 ft

Horiz. Gradient = (446.14-445.46)/65= 0.0105 foot/foot

May 23, 2007 Shallow Overburden Groundwater Elevation Data

Flow direction to the Northwest from MW-14 (GW Elev. 445.19) to MW-20 (GW Elev. 443.74)

GW Elev. (ft, MSL)

MW-14 445.19 MW-20 443.74

Approx. Dist. Between points 75 ft

Horiz. Gradient = (445.19-443.74)/75= 0.0193 foot/foot

June 25, 2007 Shallow Overburden Groundwater Elevation Data

Flow direction to the North from MW-27 (GW Elev. 443.075) to MW-17 (GW Elev. 442.82)

GW Elev. (ft, MSL)

MW-27 443.075 MW-17 442.82

Approx. Dist. Between points 77 ft

Horiz. Gradient = (443.075-442.82)/77= 0.0033 foot/foot

June 25, 2007 Shallow Overburden Groundwater Elevation Data

Flow direction to the North from MW-16 (GW Elev. 442.36) to MW-20 (GW Elev. 440.53)

GW Elev. (ft, MSL)

MW-16 442.36 MW-20 440.53

Approx. Dist. Between points 82 ft

Horiz. Gradient = (442.36-440.53)/82= 0.0223 foot/foot

Prepared by: DRP 08/03/2007 Checked by: RAL 08/09/2007

HORIZONTAL GRADIENT CALCULATIONS - DEEP OVERBURDEN

June 25, 2007 Deep Overburden Groundwater Elevation Data

Flow direction to the Northwest from MW-14D (GW Elev. 442.2) to MW-20D (GW Elev. 440.64)

GW Elev. (ft, MSL)

MW-14D 442.2 MW-20D 440.64

Approx. Dist. Between points 75 ft

Horiz. Gradient = (442.2-440.64)/75= 0.0208 foot/foot

VERTICAL GRADIENT CALCULATIONS

June 25, 2007 Shallow and Deep Overburden Groundwater Elevation Data

Loc_ID	GW Elevation - 6/25/2007 (ft, MSL)	Top of Screen (ft,bgs)	Bottom of Screen (ft,bgs)	Screen Mid-Point (ft, bgs)	Vertical Hy Gradien	
MW-10	442.81	6	16	11	-0.450	_
MW-10D	441.46	9	19	14	-0.430	•
MW-14	442.26	2	12	7	-0.008	_
MW-14D	442.20	10	20	15	-0.000	•
MW-15	442.60	2	12	7	-0.038	_
MW-15D	442.39	10.2	15.2	12.7	-0.036	•
MW-16	442.36	2	12	7	-0.039	_
MW-16D	442.14	10.2	15.2	12.7	-0.039	•
MW-17	442.82	2	12	7	-0.016	▼
MW-17D	442.68	13.5	18.5	16	-0.010	•
MW-18	442.80	1	11	6	0.057	•
MW-18D	443.04	5.2	15.2	10.2	0.037	_
MW-20	440.53	2	12	7	0.014	•
MW-20D	440.64	10	20	15	0.014	_
MW-21	441.72	2	12	7	0.018	A
MW-21D	441.87	12.5	17.5	15	0.010	_
MW-22	442.37	2	12	7	0.001	
MW-22D	442.38	12	17	14.5	0.001	_
MW-27	443.08	2	12	7	0.003	_
MW-27D	443.10	12	17	14.5	0.003	•

HYDRAULIC CONDUCTIVITY ESTIMATES

The Nobis, 2004 RI Report indicates in Section 8.0 - Conclusions that there appears to be a discrepancy between the hydraulic conductivity estimates and the given plume configuration. The RI Report indicates that the borehole permeability results (ranging from 0.0266 ft/day to 0.275 ft/day in MW-8 and MW-13, respectively) are either on the lower end of published values or lower than published ranges for silty sands (Fetter, 1988; Dominico and Schwartz, 1990).

Silty sands K range 0.00001 cm/sec 0.001 cm/sec (Fetter, 1988)

0.028 ft/day 2.83 ft/day

0.00002 cm/sec 0.02000 cm/sec Domenico & 0.057 ft/day 56.7 ft/day Schwartz, 1990)

> Prepared by: DRP 08/03/2007 Checked by: RAL 08/09/2007

As a means to check the hydraulic conductivites from the borehole permeability results, the following calculations present an estimate of hydraulic conductivities at the AMSA 68 (G) facility using recharge and anticipated flow through the aquifer:

Sites 04 - PDA and 05 - Former Gasoline UST

Assumptions: aquifer thickness (b) = 10 ft

recharge = 10 in/yrflowpath width = 150 ftrecharge area (140 x 160 feet) 22400 sq ft

horizontal gradient = 0.0139 foot/foot (avg. of shallow overburden gradients)

Total Recharge = (140)*(160)*(10/12)/(365)51.1 cu ft/day

 $Q = K^*i^*A$ $A = (150 \text{ ft})^*(10 \text{ ft}) = 1500 \text{ sq. ft.}$

 $K = Q/(i^*A)$

= 2.46 ft/day

The estimated K values from recharge calculations (~5 to 10 ft/day) are within the published ranges for silty sands, and significantly higher than borehole permeability results presented in the Nobis, 2004 RI Report (0.0266 ft/day to 0.275 ft/day).

ESTIMATED GROUNDWATER FLOW VELOCITIES

Assume:

Porosity (n) = 0.3

Hydr. Cond. $(K)^* = 2.46 \text{ ft/day}$ * K is the calculated value from estimate of aquifer recharge, and is

within the range of published values for silty sand

Sites 04 - PDA and 05 - Former Gasoline UST

Gradient (i) = 0.0139 (avg. of shallow overburden gradients)

Flow Velocity = (K * i)/n

= 0.1136 feet/day = 41 feet/year

> Prepared by: DRP 08/03/2007 Checked by: RAL 08/09/2007

APPENDIX J 2006-2007 SI ANALYTICAL DATA

		Г	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-06	SS-07
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SBS0102	SBS0202	SBS0301	SBS0402	SBS0502	SBS0601	SBS0603	SBS0702
	DEC	Leachability	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006
param_name	(ppm)	(ppm)	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	0-1 ft	2-3 ft	1-2 ft
Volatile Organics (mg/Kg)	VI /	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
1,1,1,2-Tetrachloroethane	220		0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,1,1-Trichloroethane	10000	11	0.75 U		0.00613 U	0.697 U	0.00108 J	0.00533 UJ	0.00764 U	0.00601 U
1,1,2,2-Tetrachloroethane	29		0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	-		1.5 U		0.0123 U	1.39 U	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
1,1,2-Trichloroethane	100	0.1	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 UJ	0.00533 U	0.00764 U	0.00601 U
1,1-Dichloroethane	10000		0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,1-Dichloroethene	9.5	0.7	0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,1-Dichloropropene			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,2,3-Trichlorobenzene			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,2,3-Trichloropropane			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,2,4-Trichlorobenzene	10000	140	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,2,4-Trimethylbenzene			8.13	0.00599 U	0.0992 J	8.45	1030	0.00134 J	0.0839 J	20.3 J
1,2-Dibromo-3-chloropropane	4.1		0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,2-Dibromoethane	0.07	0.0005	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,2-Dichlorobenzene	10000	41	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,2-Dichloroethane	63	0.1	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
1,2-Dichloropropane	84	0.1	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 UJ	0.00533 UJ	0.00764 U	0.00601 U
1,3,5-Trimethylbenzene			3.56	0.00599 U	0.0576 J	4.59	326	0.00533 U	0.00453 J	11.5 J
1,3-Dichlorobenzene	10000	41	0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,3-Dichloropropane			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,4-Dichlorobenzene	240	41	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
1,4-Dioxane			15 U	0.12 U	0.123 U	13.9 U	0.119 U	0.107 U	0.153 U	0.12 U
1-Chlorohexane										
2,2-Dichloropropane			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
2-Butanone	10000		R	0.00592 J	0.0154 J	R	0.0646 J	0.0107 UJ	0.0153 U	0.0154 J
2-Chlorotoluene			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
2-Hexanone			1.5 U		0.0123 U	1.39 U	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
4-Chlorotoluene			0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
4-iso-Propyltoluene			0.645 J	0.00599 U	0.0166 J	0.763	56.2 J	0.00533 U	0.00764 U	2.96 J
4-Methyl-2-pentanone	10000		R	0.012 U	0.0123 U	R	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
Acetone	10000		R		0.0763 J	R	0.195 J	0.0107 UJ	0.0153 U	0.0736 J
Acrylonitrile			15 U		0.123 U	13.9 U	0.119 U	0.107 UJ	0.153 U	0.12 U
Benzene	200	0.2	0.75 U		0.00613 U	0.697 U	0.012 J	0.00533 UJ	0.00764 U	0.000927 J
Bromobenzene			0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
Bromochloromethane			0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
Bromodichloromethane	92		0.75 U		0.00613 U	0.697 U	0.00593 UJ	0.00533 UJ	0.00764 U	0.00601 U
Bromoform	720		0.75 U		0.00613 U	0.697 U	0.00593 UJ	0.00533 U	0.00764 U	0.00601 U
Bromomethane	2900		1.5 U		0.0123 U	1.39 U	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
Butane, 2-methoxy-2-methyl-			1.5 U		0.0123 U	1.39 U	0.0119 U	0.0107 U	0.0153 U	0.012 U
Carbon disulfide			0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
Carbon tetrachloride	44	0.4	0.75 U		0.00613 U	0.697 U	0.00593 UJ	0.00533 UJ	0.00764 U	0.00601 U
Chlorobenzene	10000	3.2	0.75 U		0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
Chlorodibromomethane	68		0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 UJ	0.00533 U	0.00764 U	0.00601 U

		Ī	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-06	SS-07
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SBS0102	SBS0202	SBS0301	SBS0402	SBS0502	SBS0601	SBS0603	SBS0702
	DEC	Leachability	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006
param_name	(ppm)	(ppm)	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	0-1 ft	2-3 ft	1-2 ft
Chloroethane	,	, , , , , , , , , , , , , , , , , , ,	1.5 U	0.012 U	0.0123 U	1.39 U	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
Chloroform	940		0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
Chloromethane			1.5 UJ	0.012 U	0.0123 U	1.39 UJ	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
Cis-1,2-Dichloroethene	10000	1.7	0.75 U	0.00599 U	0.00613 U	0.697 U	0.0135 J	0.00533 UJ	0.00764 U	0.0121 J
cis-1,3-Dichloropropene			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 UJ	0.00533 UJ	0.00764 U	0.00601 U
Dibromomethane			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
Dichlorodifluoromethane			1.5 UJ	0.012 UJ	0.0123 UJ	1.39 UJ	0.0119 UJ	0.0107 UJ	0.0153 UJ	0.012 UJ
Diethyl ether			1.5 U	0.012 U	0.0123 U	1.39 U	0.0119 U	0.0107 U	0.0153 U	0.012 U
Diisopropylether			1.5 U	0.012 U	0.0123 U	1.39 U	0.0119 U	0.0107 U	0.0153 U	0.012 U
Ethyl benzene	10000	27	1.05	0.00599 U	0.00334 J	0.697 U	0.105 J	0.00533 U	0.00764 U	0.0108 J
Ethyl-t-Butyl Ether			1.5 U	0.012 U	0.0123 U	1.39 U	0.0119 U	0.0107 U	0.0153 U	0.012 U
Hexachlorobutadiene	73		0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
Isopropylbenzene	10000		0.305 J	0.00599 U	0.00601 J	0.455 J	25 J	0.00533 U	0.00792 J	0.0586 J
Methyl Tertbutyl Ether	10000	0.9	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
Methylene chloride	760		0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
Naphthalene	10000	0.8	1.92	0.012 U	0.0265 J	0.106 J	7.03 J	0.00445 J	0.00771 J	1.91 J
n-Butylbenzene			1.26	0.00599 U	0.0408 J	0.695 J	53 J	0.00533 U	0.00136 J	4.53 J
o-Xylene			2.12	0.00599 U	0.00806 J	0.697 U	29.6 J	0.00533 U	0.00112 J	0.0374 J
Propionitrile			0.75 U	0.00599 UJ	0.00613 UJ	0.697 U	0.00593 UJ	0.00533 U	0.00764 U	0.00601 U
Propylbenzene			0.908	0.00599 U	0.0154 J	1.37	77.5 J	0.00533 U	0.00934 J	0.215 J
sec-Butylbenzene			0.393 J	0.00599 U	0.0181 J	0.567 J	34 J	0.00533 U	0.00345 J	0.133 J
Styrene	190	2.9	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
t-Butyl alcohol			15 U	0.12 UJ	0.123 UJ	13.9 U	0.119 UJ	0.107 U	0.153 U	0.12 U
tert-Butylbenzene			0.75 U	0.00599 U	0.00164 J	0.0763 J	4.8 J	0.00533 U	0.00175 J	0.0328 J
Tetrachloroethene	110	0.1	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 U	0.00764 U	0.00601 U
Tetrahydrofuran			7.5 U	0.0599 U	0.0613 U	6.97 U	0.0593 U	0.0533 U	0.0764 U	0.0601 U
Toluene	10000	32	0.0916 J	0.00599 U	0.000909 J	0.697 U	1.12 J	0.00533 U	0.00101 J	0.00969 J
trans-1,2-Dichloroethene	10000	3.3	0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 U	0.00533 UJ	0.00764 U	0.00601 U
trans-1,3-Dichloropropene			0.75 U	0.00599 U	0.00613 U	0.697 U	0.00593 UJ	0.00533 U	0.00764 U	0.00601 U
trans-1,4-Dichloro-2-butene			1.5 U	0.012 U	0.0123 U	1.39 U	0.0119 U	0.0107 U	0.0153 U	0.012 U
Trichloroethene	520	0.2	0.75 U	0.000853 J	0.00613 U	0.697 U	0.00209 J	0.00533 UJ	0.00764 U	0.00601 U
Trichlorofluoromethane			1.5 U	0.012 U	0.0123 U	1.39 U	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
Vinyl acetate										
Vinyl chloride	3	0.3	1.5 UJ	0.012 U	0.0123 U	1.39 UJ	0.0119 U	0.0107 UJ	0.0153 U	0.012 U
Xylene, m/p			3.36	0.00599 U	0.00443 J	0.072 J	8.59 J	0.00533 U	0.000823 J	0.0615 J
Xylenes, Total	10000	540								
Inorganics (mg/Kg)										
Lead	500		15.1 J	43.5	124	16.7 J	10.5	86.1 J	16.7 J	16 J
Percent Solids (%)			84.4	77.1	83.6	75.7	80.8	84.8	72.1	78.2

			SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-06	SS-07
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SBS0102	SBS0202	SBS0301	SBS0402	SBS0502	SBS0601	SBS0603	SBS0702
	DEC	Leachability	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006
param_name	(ppm)	(ppm)	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	0-1 ft	2-3 ft	1-2 ft
TPH (mg/Kg)										
Diesel Range Organics										
Gasoline Range Organics										
VPH (mg/Kg)										
Benzene	200	0.2	0.67 U	0.7 U	0.54 U	0.78 U	0.8 U	0.67 U	0.9 U	0.62 U
Ethyl benzene	10000	27	1.68	0.7 U	0.54 U	0.78 U	0.8 U	0.67 U	0.9 U	0.62 U
Methyl Tertbutyl Ether	10000	0.9	0.27 U	0.28 U	0.22 U	0.31 U	0.32 U	0.27 U	0.36 U	0.25 U
Naphthalene	10000	0.8	4.51	0.7 U	4.37	0.78 U	11.3	0.67 U	0.9 U	2.76
o-Xylene			1.89	0.7 U	1.89	0.78 U	34.1	0.67 U	0.9 U	0.434 J
Toluene	10000	32	0.67 U	0.7 U	0.54 U	0.78 U	0.694 J	0.67 U	0.9 U	0.62 U
Xylene, m/p			3.37	0.7 U	0.458 J	0.78 U	7.95	0.67 U	0.9 U	0.572 J
C5-C8 Aliphatics			13 U	14 U	17.8	16 U	85.7	13 U	18 U	12 U
C5-C8 Aliphatics (unadj.)			13 U	14 U	18	16 U	86.4	13 U	18 U	12 U
C9-C10 Aromatics (unadj.)			156	14 U	306	86.4	1710	13 U	18 U	242
C9-C12 Aliphatics			92.6	14 U	241	112	1980	13 U	18 U	248
C9-C12 Aliphatics (unadj.)			256	14 U	549	199	3730	13 U	18 U	491
EPH (mg/Kg)										
2-Methylnaphthalene	10000		5.19	0.62 U	2.05	0.66 U	6.75	0.56 U	0.68 U	1.96
Acenaphthene	10000		0.734	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.498 J
Acenaphthylene	10000		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Anthracene	10000		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Benzo(a)anthracene	7.8		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Benzo(a)pyrene	0.8	240	0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Benzo(b)fluoranthene	7.8		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Benzo(ghi)perylene	10000		0.558 J	0.62 U	1.31	0.687	0.625	0.823	2.27	1.84
Benzo(k)fluoranthene	78		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Chrysene	780		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Dibenz(a,h)anthracene	0.8		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Fluoranthene	10000		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.642	0.68 U	0.62 U
Fluorene	10000		0.806	0.62 U	1.08	0.66 U	1.47	0.56 U	0.68 U	0.62 U
Indeno(1,2,3-cd)pyrene	7.8		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.56 U	0.68 U	0.62 U
Naphthalene	10000	0.8	1.63 J	0.62 U	0.474 J	0.66 UJ	4.8	0.56 UJ	0.68 UJ	2.02 J
Phenanthrene	10000		0.724	0.62 U	0.959	0.66 U	1.56	0.56 U	0.68 U	0.561 J
Pyrene	10000		0.57 U	0.62 U	0.59 U	0.66 U	0.6 U	0.491 J	0.68 U	0.62 U
C11-C22 Aromatics			398	28.4	1240	22.2 J	398	35.1	26 J	154
C11-C22 Aromatics (unadj.)			409	29.2	1240	23.8 J	415	39.5	30.2	162
C19-C36 Aliphatics			2090	40	4410	13.1	758	70.4	15.9	660
C9-C18 Aliphatics			396	12.4	1770	67.4	4170	15.5	21.4	1360

		Ī	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SBS0711	SBS0802	SBS0902	SBS1002	SSS1100	SSS1201	SSS1301	SSS1401
	DEC	Leachability	1/25/2006	1/19/2006	1/24/2006	1/25/2006	5/10/2007	5/10/2007	5/10/2007	5/10/2007
param_name	(ppm)	(ppm)	10-11 ft	1-2 ft	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	1-2 ft
Volatile Organics (mg/Kg)										
1,1,1,2-Tetrachloroethane	220		0.528 U	0.671 U	1.49 U	2.79 U	0.137 U	0.157 U	0.159 U	0.145 U
1,1,1-Trichloroethane	10000	11	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,1,2,2-Tetrachloroethane	29		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,1,2-Trichloro-1,2,2-Trifluoroethane			1.06 U	1.34 U	2.99 U	5.59 U				
1,1,2-Trichloroethane	100	0.1	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,1-Dichloroethane	10000		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,1-Dichloroethene	9.5	0.7	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,1-Dichloropropene			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,2,3-Trichlorobenzene			0.528 U	0.671 UJ	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,2,3-Trichloropropane			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,2,4-Trichlorobenzene	10000	140	0.528 U	0.671 UJ	1.49 U	2.79 U	0.0685 UJ	0.0783 UJ	0.0797 UJ	0.0726 UJ
1,2,4-Trimethylbenzene			15	17.6	54.8 J	54.7 J	0.0685 U	0.0783 U	6.83	3.71
1,2-Dibromo-3-chloropropane	4.1		0.528 U	R	1.49 U	2.79 U	R	R	R	R
1,2-Dibromoethane	0.07	0.0005	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,2-Dichlorobenzene	10000	41	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,2-Dichloroethane	63	0.1	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 UJ	0.0783 UJ	0.0797 UJ	0.0726 UJ
1,2-Dichloropropane	84	0.1	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,3,5-Trimethylbenzene			6.35	8.01	29.6 J	31.9 J	0.0685 U	0.0783 U	2.63	2.01
1,3-Dichlorobenzene	10000	41	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,3-Dichloropropane			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,4-Dichlorobenzene	240	41	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
1,4-Dioxane			10.6 U	13.4 U	29.9 U	55.9 U	R	R	R	R
1-Chlorohexane							0.0685 U	0.0783 U	0.0797 U	0.0726 U
2,2-Dichloropropane			0.528 U	0.671 U	1.49 U	2.79 U	0.137 U	0.157 U	0.159 U	0.145 U
2-Butanone	10000		1.06 U	R	2.99 U	5.59 U	R	R	R	R
2-Chlorotoluene			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
2-Hexanone			1.06 U	1.34 U	2.99 U	5.59 U	0.685 U	0.783 U	0.797 U	0.726 U
4-Chlorotoluene			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
4-iso-Propyltoluene			1.39	1.24	7.82 J	8.38 J	0.0685 U	0.0783 U	0.263	5.84
4-Methyl-2-pentanone	10000		R	R	R	R	R	R	R	R
Acetone	10000		R	R	R	R	R	R	R	R
Acrylonitrile			R	13.4 U	R	R	0.0005.:	0.0705	0.0707	0.0705::
Benzene	200	0.2	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Bromobenzene			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Bromochloromethane			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Bromodichloromethane	92		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Bromoform	720		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Bromomethane	2900		1.06 U	1.34 U	2.99 U	5.59 U	0.137 U	0.157 U	0.159 U	0.145 U
Butane, 2-methoxy-2-methyl-			1.06 U	1.34 U	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Carbon disulfide	4.4	2.4	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Carbon tetrachloride	44	0.4	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 UJ	0.0783 UJ	0.0797 UJ	0.0726 UJ
Chlorobenzene	10000	3.2	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Chlorodibromomethane	68		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U

		Ī	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SBS0711	SBS0802	SBS0902	SBS1002	SSS1100	SSS1201	SSS1301	SSS1401
	DEC	Leachability	1/25/2006	1/19/2006	1/24/2006	1/25/2006	5/10/2007	5/10/2007	5/10/2007	5/10/2007
param_name	(ppm)	(ppm)	10-11 ft	1-2 ft	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	1-2 ft
Chloroethane	, , , , , , , , , , , , , , , , , , ,	V 1	1.06 U	1.34 U	2.99 U	5.59 U	R	R	R	R
Chloroform	940		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Chloromethane			1.06 U	1.34 UJ	2.99 U	5.59 U	0.137 U	0.157 U	0.159 U	0.145 U
Cis-1,2-Dichloroethene	10000	1.7	0.528 U	0.284 J	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
cis-1,3-Dichloropropene			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Dibromomethane			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Dichlorodifluoromethane			1.06 U	1.34 UJ	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Diethyl ether			1.06 U	1.34 U	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Diisopropylether			1.06 U	1.34 U	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Ethyl benzene	10000	27	2.44	0.546 J	0.537 J	0.579 J	0.0685 U	0.0783 U	0.212	0.103
Ethyl-t-Butyl Ether			1.06 U	1.34 U	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Hexachlorobutadiene	73		0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Isopropylbenzene	10000		0.916	0.43 J	1.05 J	1.19 J	0.0685 U	0.0783 U	0.276	0.145
Methyl Tertbutyl Ether	10000	0.9	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Methylene chloride	760		0.528 U	0.671 U	1.49 U	2.79 U	0.343 U	0.392 U	0.398 U	0.363 U
Naphthalene	10000	8.0	2.17	0.56 J	9.76 J	9.91 J	0.0685 U	0.0783 U	0.623	0.799
n-Butylbenzene			3.09	1.7	14.8 J	18.8 J	0.0685 UJ	0.0783 UJ	0.0797 UJ	0.0726 UJ
o-Xylene			2.45	0.907	1.51 J	1.3 J	0.0685 U	0.0783 U	0.44	0.492
Propionitrile			0.528 U	0.671 U	1.49 U	2.79 U				
Propylbenzene			2.42	1.53	4.67 J	4.22 J	0.0685 U	0.0783 U	0.931	0.405
sec-Butylbenzene			0.998	0.56 J	3.04 J	3.84 J	0.0685 U	0.0783 U	0.25	0.222
Styrene	190	2.9	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
t-Butyl alcohol			10.6 U	13.4 U	29.9 U	55.9 U				
tert-Butylbenzene			0.153 J	0.127 J	0.95 J	1.37 J	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Tetrachloroethene	110	0.1	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Tetrahydrofuran			5.28 U	6.71 U	14.9 U	27.9 U	R	R	R	R
Toluene	10000	32	0.528 U	0.462 J	0.223 J	2.79 U	0.0685 U	0.0783 U	0.132	0.222
trans-1,2-Dichloroethene	10000	3.3	0.528 U	0.0947 J	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
trans-1,3-Dichloropropene			0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
trans-1,4-Dichloro-2-butene			1.06 U	1.34 U	2.99 U	5.59 U				
Trichloroethene	520	0.2	0.528 U	0.671 U	1.49 U	2.79 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Trichlorofluoromethane			1.06 U	1.34 U	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Vinyl acetate							0.343 U	0.392 U	0.398 U	0.363 U
Vinyl chloride	3	0.3	1.06 U	1.34 UJ	2.99 U	5.59 U	0.0685 U	0.0783 U	0.0797 U	0.0726 U
Xylene, m/p			7.78	2	2.49 J	1.39 J	0.137 U		0.62	0.449
Xylenes, Total	10000	540					0.206 U	0.235 U	1.06	0.941
Inorganics (mg/Kg)										
Lead	500		7.49	12.6 J	23.4	30.3				
Percent Solids (%)			91.4	80.7	84.3	84.7				

		Ī	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SBS0711	SBS0802	SBS0902	SBS1002	SSS1100	SSS1201	SSS1301	SSS1401
	DEC	Leachability	1/25/2006	1/19/2006	1/24/2006	1/25/2006	5/10/2007	5/10/2007	5/10/2007	5/10/2007
param_name	(ppm)	(ppm)	10-11 ft	1-2 ft	1-2 ft	1-2 ft	0-1 ft	1-2 ft	1-2 ft	1-2 ft
TPH (mg/Kg)										
Diesel Range Organics							46.5 U	68.5	625	2750
Gasoline Range Organics							1.61 U	4.24	50.8	126 J
VPH (mg/Kg)										
Benzene	200	0.2	0.56 U	0.72 U	0.61 U	0.76 U				
Ethyl benzene	10000	27	0.56 U	1.2	0.61 U	0.76 U				
Methyl Tertbutyl Ether	10000	0.9	0.23 U	0.29 U	0.24 U	0.3 U				
Naphthalene	10000	0.8	1.05	1.71	6.2	9.95				
o-Xylene			1.26	0.919	4.71	3.26				
Toluene	10000	32	0.56 U	3.19	0.61 U	0.76 U				
Xylene, m/p			2.18	2.47	2.16	1.11				
C5-C8 Aliphatics			11.8	14 U	13	16.2				
C5-C8 Aliphatics (unadj.)			11.9	14 U	13.3	16.3				
C9-C10 Aromatics (unadj.)			69.1	120	550	675				
C9-C12 Aliphatics			58.9	52.1	318	422				
C9-C12 Aliphatics (unadj.)			131	176	875	1100				
EPH (mg/Kg)										
2-Methylnaphthalene	10000		3.7	0.61 U	4.69	7.46				
Acenaphthene	10000		0.603	0.61 U	0.644	0.778				
Acenaphthylene	10000		0.52 U	0.61 U	0.58 U	0.57 U				
Anthracene	10000		0.52 U	0.61 U	0.58 U	0.57 U				
Benzo(a)anthracene	7.8		0.52 U	0.61 U	0.58 U	0.57 U				
Benzo(a)pyrene	0.8	240	0.52 U	0.61 U	0.58 U	0.57 U				
Benzo(b)fluoranthene	7.8		0.52 U	0.61 U	0.58 U	0.57 U				
Benzo(ghi)perylene	10000		0.52 U	1.35	0.58 U	0.465 J				
Benzo(k)fluoranthene	78		0.52 U	0.61 U	0.58 U	0.57 U				
Chrysene	780		0.52 U	0.61 U	0.58 U	0.57 U				
Dibenz(a,h)anthracene	0.8		0.52 U	0.61 U	0.58 U	0.57 U				
Fluoranthene	10000		0.52 U	0.61 U	0.58 U	0.57 U				
Fluorene	10000		0.63	0.61 U	0.631	1.67				
Indeno(1,2,3-cd)pyrene	7.8		0.52 U	0.61 U	0.58 U	0.57 U				
Naphthalene	10000	0.8	1.17	1.85 J	3.33	3.42				
Phenanthrene	10000		0.565	0.61 U	0.471 J	1.43				
Pyrene	10000		0.52 U	0.61 U	0.58 U	0.57 U				
C11-C22 Aromatics			625	43.7	878	596				
C11-C22 Aromatics (unadj.)			632	47.9	888	613				
C19-C36 Aliphatics			1210	182 J	4870	808				
C9-C18 Aliphatics			1860	256 J	4380	2730				

			SS-15	SS-16	SS-17	SS-18	SS-19	SS-20
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SSS1501	SSS1600	SSS1701	SSS1800	SSS1901	SSS2000
	DEC	Leachability	5/10/2007	5/10/2007	5/11/2007	5/11/2007	5/11/2007	5/11/2007
param_name	(ppm)	(ppm)	1-2 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft
Volatile Organics (mg/Kg)	(FF)	(PP***)						
1,1,1,2-Tetrachloroethane	220		0.132 U	0.135 U	0.141 U	0.0886 U	0.152 U	0.0973 U
1,1,1-Trichloroethane	10000	11	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,1,2,2-Tetrachloroethane	29		0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,1,2-Trichloro-1,2,2-Trifluoroethane					0.0.0		0.0.0	
1,1,2-Trichloroethane	100	0.1	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
1,1-Dichloroethane	10000		0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,1-Dichloroethene	9.5	0.7	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
1,1-Dichloropropene		-	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,2,3-Trichlorobenzene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
1,2,3-Trichloropropane			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,2,4-Trichlorobenzene	10000	140	0.066 UJ	0.0677 UJ		0.0443 U	0.0762 U	0.0487 U
1,2,4-Trimethylbenzene			0.11	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,2-Dibromo-3-chloropropane	4.1		R	R	R	R	R	R
1.2-Dibromoethane	0.07	0.0005	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
1.2-Dichlorobenzene	10000	41	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,2-Dichloroethane	63	0.1	0.066 UJ	0.0677 UJ		0.0443 U	0.0762 U	0.0487 U
1,2-Dichloropropane	84	0.1	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,3,5-Trimethylbenzene			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,3-Dichlorobenzene	10000	41	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,3-Dichloropropane	.0000		0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1,4-Dichlorobenzene	240	41	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
1.4-Dioxane	-		R	R	R	R	R	R
1-Chlorohexane			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
2,2-Dichloropropane			0.132 U	0.135 U	0.141 U	0.0886 U	0.152 U	0.0973 U
2-Butanone	10000		R	R	R	R	R	R
2-Chlorotoluene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
2-Hexanone			0.66 U	0.677 U		0.443 U	0.762 U	0.487 U
4-Chlorotoluene			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
4-iso-Propyltoluene			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
4-Methyl-2-pentanone	10000		R	R	R	R	R	R
Acetone	10000		R	R	R	R	R	R
Acrylonitrile								
Benzene	200	0.2	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Bromobenzene			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
Bromochloromethane			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
Bromodichloromethane	92		0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Bromoform	720		0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
Bromomethane	2900		0.132 U	0.135 U	0.141 U	0.0886 U	0.152 U	0.0973 U
Butane, 2-methoxy-2-methyl-			0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U
Carbon disulfide			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Carbon tetrachloride	44	0.4	0.066 UJ	0.0677 UJ		0.0443 U	0.0762 U	0.0487 U
Chlorobenzene	10000	3.2	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Chlorodibromomethane	68	0.2	0.066 U	0.0677 U		0.0443 U	0.0762 U	0.0487 U

		Ī	SS-15	SS-16	SS-17	SS-18	SS-19	SS-20
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SSS1501	SSS1600	SSS1701	SSS1800	SSS1901	SSS2000
	DEC	Leachability	5/10/2007	5/10/2007	5/11/2007	5/11/2007	5/11/2007	5/11/2007
param_name	(ppm)	(ppm)	1-2 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft
Chloroethane			R	R	R	R	R	R
Chloroform	940		0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Chloromethane			0.132 U	0.135 U	0.141 U	0.0886 U	0.152 U	0.0973 U
Cis-1,2-Dichloroethene	10000	1.7	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
cis-1,3-Dichloropropene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Dibromomethane			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Dichlorodifluoromethane			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Diethyl ether			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Diisopropylether			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Ethyl benzene	10000	27	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Ethyl-t-Butyl Ether			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Hexachlorobutadiene	73		0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Isopropylbenzene	10000		0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Methyl Tertbutyl Ether	10000	0.9	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Methylene chloride	760		0.33 U	0.338 U	0.352 U	0.222 U	0.381 U	0.243 U
Naphthalene	10000	0.8	0.316	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
n-Butylbenzene			0.066 UJ	0.0677 UJ	0.0704 U	0.0443 U	0.0762 U	0.0487 U
o-Xylene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Propionitrile								
Propylbenzene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
sec-Butylbenzene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Styrene	190	2.9	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
t-Butyl alcohol								
tert-Butylbenzene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Tetrachloroethene	110	0.1	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Tetrahydrofuran			R	R	R	R	R	R
Toluene	10000	32	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
trans-1,2-Dichloroethene	10000	3.3	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
trans-1,3-Dichloropropene			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
trans-1,4-Dichloro-2-butene								
Trichloroethene	520	0.2	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Trichlorofluoromethane			0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Vinyl acetate			0.33 U	0.338 U	0.352 U	0.222 U	0.381 U	0.243 U
Vinyl chloride	3	0.3	0.066 U	0.0677 U	0.0704 U	0.0443 U	0.0762 U	0.0487 U
Xylene, m/p			0.132 U	0.135 U	0.141 U	0.0886 U	0.152 U	0.0973 U
Xylenes, Total	10000	540	0.198 U	0.203 U	0.211 U	0.133 U	0.228 U	0.146 U
Inorganics (mg/Kg)								
Lead	500							
Percent Solids (%)								

		Ī	SS-15	SS-16	SS-17	SS-18	SS-19	SS-20
	Industrial/		RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	Commercial	GA	SSS1501	SSS1600	SSS1701	SSS1800	SSS1901	SSS2000
	DEC	Leachability	5/10/2007	5/10/2007	5/11/2007	5/11/2007	5/11/2007	5/11/2007
param_name	(ppm)	(ppm)	1-2 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft
TPH (mg/Kg)	· · · /	, , , , , , , , , , , , , , , , , , ,						
Diesel Range Organics			1170	90	46.4 U	38.7 U	47.7 U	40.8 U
Gasoline Range Organics			6.02 J	7.06	1.83 U	1.15 U	2.22 U	1.92
VPH (mg/Kg)								
Benzene	200	0.2						
Ethyl benzene	10000	27						
Methyl Tertbutyl Ether	10000	0.9						
Naphthalene	10000	0.8						
o-Xylene								
Toluene	10000	32						
Xylene, m/p								
C5-C8 Aliphatics								
C5-C8 Aliphatics (unadj.)								
C9-C10 Aromatics (unadj.)								
C9-C12 Aliphatics								
C9-C12 Aliphatics (unadj.)								
EPH (mg/Kg)								
2-Methylnaphthalene	10000							
Acenaphthene	10000							
Acenaphthylene	10000							
Anthracene	10000							
Benzo(a)anthracene	7.8							
Benzo(a)pyrene	0.8	240						
Benzo(b)fluoranthene	7.8							
Benzo(ghi)perylene	10000							
Benzo(k)fluoranthene	78							
Chrysene	780							
Dibenz(a,h)anthracene	0.8							
Fluoranthene	10000							
Fluorene	10000							
Indeno(1,2,3-cd)pyrene	7.8							
Naphthalene	10000	0.8						
Phenanthrene	10000							
Pyrene	10000							
C11-C22 Aromatics								
C11-C22 Aromatics (unadj.)								
C19-C36 Aliphatics								
C9-C18 Aliphatics								

NOTES:

DEC - direct exposure criteria ft - feet (below ground surface) GA - GA classified aquifer J - result is estimated MG/KG - milligrams per kilogram
MG/L - milligrams per liter
R - rejected result
RIDEM - Rhode Island Dept. of Environmental Management
U - not detected

	i	GP-01	GP-01	GP-02	GP-02	GP-03	GP-04	GP-05	GP-06	GP-07
		GP-01	GP-01	GP-02	GP-02	GP-03	GP-04	GP-05	GP-06	GP-07
	RIDEM	RI 22 GPS 0101	RI22-GPS0114	RI 22 GPS 0201	RI22-GPS0214	RI22-GPS0301	RI22-GPS0401	RI 22 GPS 0501	RI 22 GPS 0601	RI22-GPS0701
	GA GO	5/8/2007	5/17/2007	5/8/2007	5/17/2007	5/9/2007	5/9/2007	5/8/2007	5/8/2007	5/9/2007
param.name	(mg/L)	2.5-7.5 ft	14-16 ft	3.7-7.7 ft	14-16 ft	3.1-5 ft	5/9/2007 5.7-7.2 ft	4-8 ft	3.6-7.2 ft	4.5-8.7 ft
Volatile Organics by 8011 (mg/L)	(IIIg/L)	2.5-7.5 11	14-10 11	3.7-7.7 IL	14-1011	3.1-3 IL	5.7-7.2 IL	4-0 II	3.0-1.2 II	4.5-0.7 10
1,2-Dibromo-3-chloropropane	0.0002									
1,2-Dibromoethane	0.0002									
Volatile Organics (mg/L)	0.00003									
1,1,1,2-Tetrachloroethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,1,1-Trichloroethane	0.2		0.001 U		0.001 U	0.001 U	0.001 U			
1,1,2,2-Tetrachloroethane	0.2	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.0003 0	0.0005 0	0.0005 0	0.0005 0	0.0005 0	0.0003 0	0.0003 0	0.0003 0	0.0003 0
	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,1,2-Trichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,1-Dichloroethane	0.007	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
	0.007	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U			
1,1-Dichloropropene 1,2,3-Trichlorobenzene		0.002 U 0.001 U	0.002 U 0.001 U	0.002 U 0.001 U	0.002 U 0.001 U	0.002 U 0.001 U	0.002 U 0.001 U			
		0.001 U		0.001 U		0.001 U	0.001 U			
1,2,3-Trichloropropane	0.07		0.001 U							
1,2,4-Trichlorobenzene	0.07	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,2,4-Trimethylbenzene	0.000	0.001 U	0.001 U	0.001 U	0.0356		0.001 U			
1,2-Dibromo-3-chloropropane	0.0002	0.005 U	0.005 U		0.005 U		0.005 UJ			
1,2-Dibromoethane	0.00005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U			
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,2-Dichloropropane	0.005	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U			
1,3,5-Trimethylbenzene		0.001 U	0.001 U		0.0089	0.001 U	0.001 U			
1,3-Dichlorobenzene	0.6		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,4-Dichlorobenzene	0.075	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,4-Dioxane		R	R	R	R	R	R	R	R	R
1-Chlorohexane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
2,2-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
2-Butanone		R	R	R	R	R	R	R	R	R
2-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
2-Hexanone		0.01 U	0.01 U		0.01 U	0.01 U	0.01 U			
4-Chlorotoluene		0.001 U	0.001 U		0.001 U	0.001 U	0.001 U			
4-iso-Propyltoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
4-Methyl-2-pentanone		0.025 U	0.025 U	0.025 U		0.025 U	0.025 U			
Acetone		R	R	R	R	R	R	R	R	R
Acrylonitrile										
Benzene	0.005	0.0019	0.001 U	0.001 U	0.001 U		0.001 U			
Bromobenzene		0.002 U	0.002 U	0.002 U		0.002 U	0.002 U			
Bromochloromethane		0.001 U	0.001 U			0.001 U	0.001 U			
Bromodichloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Bromoform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Bromomethane		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U			
Butane, 2-methoxy-2-methyl-		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Carbon disulfide		0.001 U	0.001 U				0.001 U			
Carbon tetrachloride	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Chlorobenzene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Chlorodibromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L

		GP-01	GP-01	GP-02	GP-02	GP-03	GP-04	GP-05	GP-06	GP-07
		0. 0.	<u> </u>	0. 02	0. 02	C . 55	3 . 3 .	C . 33	3 . 33	G. G.
	RIDEM	RI 22 GPS 0101	RI22-GPS0114	RI 22 GPS 0201	RI22-GPS0214	RI22-GPS0301	RI22-GPS0401	RI 22 GPS 0501	RI 22 GPS 0601	RI22-GPS0701
	GA GO	5/8/2007	5/17/2007	5/8/2007	5/17/2007	5/9/2007	5/9/2007	5/8/2007	5/8/2007	5/9/2007
param.name	(mg/L)	2.5-7.5 ft	14-16 ft	3.7-7.7 ft	14-16 ft	3.1-5 ft	5.7-7.2 ft	4-8 ft	3.6-7.2 ft	4.5-8.7 ft
Chloroethane		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Chloroform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloromethane		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Cis-1,2-Dichloroethene	0.07	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,3-Dichloropropene		0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Dibromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dichlorodifluoromethane		0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Diethyl ether		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Diisopropylether		0.001 U	0.001 U			0.001 U			0.001 U	0.001 U
Ethyl benzene	0.7	0.001 U	0.001 U	0.001 U	0.0083	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Ethyl-t-Butyl Ether		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Hexachlorobutadiene		0.0006 U	0.0006 U	0.0006 U	0.0006 U	0.0006 U	0.0006 U	0.0006 U	0.0006 U	0.0006 U
Isopropylbenzene		0.001 U	0.001 U	0.001 U	0.001	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Methyl Tertbutyl Ether	0.04	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U
Methylene chloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Naphthalene	0.02	0.001 U	0.001 U	0.001 U	0.0266			0.001 U	0.001 U	0.001 U
n-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U
o-Xylene		0.001 U	0.001 U	0.001 U	0.0129	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Propionitrile										
Propylbenzene		0.001 U	0.001 U	0.001 U	0.0041	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
p-Xylene										
sec-Butylbenzene		0.001 U	0.001 U	0.001 U	0.0017	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Styrene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
t-Butyl alcohol										
tert-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrahydrofuran		0.005 U	R	R	R	R	R	R	R	R
Toluene	1	0.001 U	0.001 U	0.001 U	0.0179	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Total Trihalomethane		0.004 U	0.004 U	0.004 U	0.004 U	0.004 U				0.004 U
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
trans-1,3-Dichloropropene		0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U		0.0005 U	0.0005 U	0.0005 U
trans-1,4-Dichloro-2-butene										
Trichloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichlorofluoromethane		0.002 U	0.002 U			0.002 U				
Vinyl acetate		0.005 U	0.005 U			0.005 U		0.005 U		
Vinyl chloride	0.002		0.001 U			0.001 U				
Xylene, m/p		0.002 U	0.002 U	0.002 U	0.0302			0.002 U	0.002 U	0.002 U
Xylenes, Total	10		0.003 U	0.003 U	0.0431	0.003 U				
Metals, Total (mg/L)										
Lead	0.015			0.01 U		0.011	0.024	0.018	0.01 U	0.014
Metals, Dissolved (mg/L)										
Lead	0.015	0.01 U		0.01 U		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U

		CC 04	CC 02	00.00	CC 04	CC 0F	00.00	CC 07	CC 00	CC 00
		SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09
	RIDEM	RI22-GWS0101	RI22-GWS0201	RI22-GWS0301	RI22-GWS0401	RI22-GWS0501	RI22-GWS0601	RI22-GWS0701	RI22-GWS0801	RI22-GWS0901
	GA GO	1/19/2006	1/18/2006	1/18/2006	1/19/2006	1/19/2006	1/19/2006	1/19/2006	1/20/2006	1/26/2006
param.name	(mg/L)	1-4 ft	1-4 ft	0.3-4 ft	2-4 ft	0.6-4 ft	1.8-4 ft	0.4-4 ft	3.5-4 ft	2-12 ft
Volatile Organics by 8011 (mg/L)	0.0000	0.0000404.11	0.000040044	0.000040711	0.0000004.11	0.000040044	0.0000444411	0.00004004	0.000040411	0.00004071
1,2-Dibromo-3-chloropropane	0.0002	0.0000401 U	0.0000403 U	0.0000407 U	0.0000391 U	0.0000426 U	0.0000411 U	0.0000428 U		
1,2-Dibromoethane	0.00005	0.0000201 U	0.0000201 U	0.0000203 U	0.0000196 U	0.0000213 U	0.0000206 U	0.0000214 U	0.0000202 U	0.0000203 L
Volatile Organics (mg/L)		0.004.11	0.004.11	0.004.11	0.004.11	0.004.11	0.004.11	0.004.11	0.004.11	0.004.1
1,1,1,2-Tetrachloroethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
1,1,1-Trichloroethane	0.2	0.001 UJ	0.001 UJ	0.001 U	0.001 UJ	0.001 UJ	0.001 UJ			
1,1,2,2-Tetrachloroethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
1,1,2-Trichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
1,1-Dichloroethane	0.00=	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000403 J	0.001 U		
1,1-Dichloroethene	0.007	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,1-Dichloropropene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
1,2,3-Trichlorobenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
1,2,3-Trichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
1,2,4-Trichlorobenzene	0.07	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
1,2,4-Trimethylbenzene		0.0562	0.00184	0.0972	0.0519	0.241	0.394	0.109	0.533	0.27
1,2-Dibromo-3-chloropropane	0.0002	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 L
1,2-Dibromoethane	0.00005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000187 J	0.001 L
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.000396 J
1,2-Dichloropropane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,3,5-Trimethylbenzene		0.0221	0.001 U	0.0258	0.0163	0.137	0.112	0.0535	0.149	0.124
1,3-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,4-Dichlorobenzene	0.075	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,4-Dioxane		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1-Chlorohexane										
2,2-Dichloropropane		0.001 UJ	0.001 UJ	0.001 U	0.001 UJ	0.001 UJ	0.001 UJ	0.001 UJ	0.001 UJ	0.001 L
2-Butanone		0.00393 J	0.01 U	0.01 U	0.01 U	0.01 U	0.0049 J	0.01 U	0.0081 J	F
2-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
2-Hexanone		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
4-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
4-iso-Propyltoluene		0.00318	0.001 U	0.00428	0.00133	0.017	0.00823	0.00801	0.0129	
4-Methyl-2-pentanone		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Acetone		0.0174 J	R	R	0.00967 J	0.00449 J	0.0174 J	0.0082 J	0.0311 J	
Acrylonitrile		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		
Benzene	0.005	0.00541	0.001 U	0.001 U	0.00115	0.000398 J	0.0049			0.00491
Bromobenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		0.001 L
Bromochloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Bromodichloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
Bromoform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
Bromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
Butane, 2-methoxy-2-methyl-		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Carbon disulfide		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Carbon tetrachloride	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U		
Chlorobenzene	0.003	0.001 U	0.001 U	0.001 U	0.001 U	0.001 J	0.001 J	0.001 U		
	0.1					0.0001613 0.001 U	0.00026 J			
Chlorodibromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L

		SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09
	RIDEM GA GO	RI22-GWS0101 1/19/2006	RI22-GWS0201 1/18/2006	RI22-GWS0301 1/18/2006	RI22-GWS0401 1/19/2006	RI22-GWS0501 1/19/2006	RI22-GWS0601 1/19/2006	RI22-GWS0701 1/19/2006	RI22-GWS0801 1/20/2006	RI22-GWS0901 1/26/2006
param.name	(mg/L)	1-4 ft	1-4 ft	0.3-4 ft	2-4 ft	0.6-4 ft	1.8-4 ft	0.4-4 ft	3.5-4 ft	2-12 ft
Chloroethane		0.001 U	0.001 U						******	
Chloroform		0.001 U	0.001 U							0.001 U
Chloromethane	0.07	0.001 U	0.001 U				0.001 U			0.001 U
Cis-1,2-Dichloroethene	0.07		0.001 U			0.000593 J	0.00151			0.00183
cis-1,3-Dichloropropene		0.001 U	0.001 U			0.001 U	0.001 U			0.001 U
Dibromomethane		0.001 U	0.001 U			0.001 U	0.001 U			0.001 U
Dichlorodifluoromethane		0.001 U	0.001 U			0.001 U	0.001 U			0.001 U
Diethyl ether		0.01 U	0.01 U			0.01 U	0.01 U			0.01 U
Diisopropylether		0.01 U	0.01 U				0.01 U			0.01 U
Ethyl benzene	0.7		0.001 U			0.00161	0.00175			0.0104
Ethyl-t-Butyl Ether		0.01 U	0.01 U							0.01 U
Hexachlorobutadiene		0.001 U	0.001 U							0.001 U
Isopropylbenzene		0.00288	0.001 U							0.0094
Methyl Tertbutyl Ether	0.04		0.005 U							0.005 U
Methylene chloride	0.005		0.005 U							0.005 U
Naphthalene	0.02		0.001 U			0.00866	0.0023			0.0607
n-Butylbenzene		0.00343	0.001 U			0.0144	0.00543			
o-Xylene		0.0213	0.001 U				0.00391			0.025
Propionitrile		0.005 U	0.005 U				0.005 U			0.005 U
Propylbenzene		0.00558	0.001 U	0.00672	0.00441	0.0329	0.0183	0.00778	0.0476	0.0237
p-Xylene										
sec-Butylbenzene		0.00124	0.001 U				0.00433			
Styrene	0.1		0.001 U				0.001 U			0.001 U
t-Butyl alcohol		0.1 U	0.0582 J							0.1 UJ
tert-Butylbenzene		0.001 U	0.001 U			0.00216				
Tetrachloroethene	0.005		0.001 U							0.001 U
Tetrahydrofuran		0.05 U	0.05 U			0.05 U	0.05 U			0.05 UJ
Toluene	1	0.00414	0.001 U	0.001 U	0.001 U	0.00124	0.000991 J	0.000566 J	0.127	0.015
Total Trihalomethane										
trans-1,2-Dichloroethene	0.1		0.001 U				0.001 U			0.001 U
trans-1,3-Dichloropropene		0.001 U	0.001 U							0.001 U
trans-1,4-Dichloro-2-butene		0.01 U	0.01 U				0.01 U			0.01 U
Trichloroethene	0.005		0.001 U				0.001 U			0.001 U
Trichlorofluoromethane		0.001 U								
Vinyl acetate										
Vinyl chloride	0.002		0.001 U					0.001 U		
Xylene, m/p		0.0721	0.001 U	0.00346	0.0013	0.00666	0.00902	0.00373	0.344	0.0408
Xylenes, Total	10									
Metals, Total (mg/L)			_							
Lead	0.015	2.26	0.194	0.335	1.27	1.18	0.824	1.05	0.176	0.142 J
Metals, Dissolved (mg/L)										
Lead	0.015	0.00682	0.00276	0.0585	0.00468	0.0171	0.116	0.00339	0.00807	0.00874

	ī	SS-10	MW-1	MW-1	MW-2	MW-2	MW-8	MW-8	MW-14	MW-14
		33-10	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	RIDEM	RI22-GWS1001	GWSMW101	GWSMW102	GWSMW201	GWSMW202	GWSMW801	GWSMW802	GWSMW1401	GWSMW1402
	GA GO	1/26/2006	1/27/2006	6/26/2007	1/30/2006	6/26/2007	1/30/2006	6/27/2007	1/30/2006	6/27/2007
param.name	(mg/L)	1/20/2000 1-4 ft	10-20 ft	6-16 ft	6-16 ft	6-16 ft	6-16 ft	6-16 ft	2-12 ft	2-12 ft
Volatile Organics by 8011 (mg/L)	(IIIg/L)	1-4 11	10-20 11	0-10 II	0-10 IL	0-10 IL	0-1011	0-10 II	2-12 II	Z-1Z II
1,2-Dibromo-3-chloropropane	0.0002	0.0000423 U	0.0000408 U		0.0000417 U		0.0000431 U		0.000044 U	
1,2-Dibromoethane	0.0002	0.0000423 U	0.0000408 U		0.0000417 U		0.0000431 U		0.000044 U	
Volatile Organics (mg/L)	0.00005	0.0000212 0	0.0000204 0		0.0000209 0		0.00002160		0.000022 0	
		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.2		0.001 U	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U	0.001 U
	0.2						0.001 U			
1,1,2,2-Tetrachloroethane		0.001 U	0.001 U	0.0005 U	0.001 U	0.0005 U	0.001 U	0.0005 U	0.001 U	0.0005 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.005	0.005 U	0.005 U	0.004.11	0.005 U	0.004.11	0.005 U	0.004.11	0.005 U	0.004.11
1,1,2-Trichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethane	0.007	0.000846 J	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	0.007	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloropropene		0.001 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U
1,2,3-Trichlorobenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2,3-Trichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2,4-Trichlorobenzene	0.07	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2,4-Trimethylbenzene		0.352	0.001 U	0.001 U	0.001 U	0.001 U	0.00124	0.0016	0.0326	0.0034
1,2-Dibromo-3-chloropropane	0.0002	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dibromoethane	0.00005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 UJ	0.001 U	0.001 UJ
1,2-Dichloropropane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,3,5-Trimethylbenzene		0.196	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0018	0.0101	0.004
1,3-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001
1,4-Dichlorobenzene	0.075	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
1,4-Dioxane		0.1 UJ	0.1 UJ	R	0.1 UJ	R	0.1 UJ	R	0.1 UJ	R
1-Chlorohexane				0.001 U		0.001 U		0.001 U		0.001 U
2,2-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
2-Butanone		0.00702 J	R	R	0.01 U	R	0.01 U	R	0.01 U	R
2-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
2-Hexanone		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
4-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
4-iso-Propyltoluene		0.0223	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00118	0.001 U
4-Methyl-2-pentanone		R	R	0.025 U	R	0.025 U	R	0.025 U	R	0.025 U
Acetone		0.0363 J	R	R	0.00331 J	R	0.00432 J	R	0.00318 J	R
Acrylonitrile		0.1 U	0.1 U		R		R		R	
Benzene	0.005	0.0013	0.001 U	0.001 U	0.001 U	0.001 U	0.318	0.531	0.02	0.202
Bromobenzene		0.001 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U
Bromochloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromodichloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromoform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane		0.001 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U
Butane, 2-methoxy-2-methyl-		0.01 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U
Carbon disulfide		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	0.1									

		SS-10	MW-1	MW-1	MW-2	MW-2	MW-8	MW-8	MW-14	MW-14
			RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-	RI22-
	RIDEM	RI22-GWS1001	GWSMW101	GWSMW102	GWSMW201	GWSMW202	GWSMW801	GWSMW802	GWSMW1401	GWSMW1402
	GA GO	1/26/2006	1/27/2006	6/26/2007	1/30/2006	6/26/2007	1/30/2006	6/27/2007	1/30/2006	6/27/2007
param.name	(mg/L)	1-4 ft	10-20 ft	6-16 ft	6-16 ft	6-16 ft	6-16 ft	6-16 ft	2-12 ft	2-12 ft
Chloroethane		0.00175	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U	0.001 U	0.002 U
Chloroform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloromethane		0.001 U	0.001 U	0.002 UJ	0.001 U	0.002 UJ	0.001 U	0.002 U	0.001 U	0.002 UJ
Cis-1,2-Dichloroethene	0.07	0.00163	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,3-Dichloropropene		0.001 U	0.001 U	0.0005 U	0.001 U		0.001 U	0.0005 U	0.001 U	0.0005 U
Dibromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dichlorodifluoromethane		0.001 U	0.001 U	0.002 U	0.001 U	0.002 UJ	0.001 U	0.002 U	0.001 U	0.002 U
Diethyl ether		0.01 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U
Diisopropylether		0.01 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U
Ethyl benzene	0.7	0.00942	0.001 U	0.001 U	0.001 U	0.001 U	0.00774	0.0265	0.0162	0.0746
Ethyl-t-Butyl Ether		0.01 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U	0.01 U	0.001 U
Hexachlorobutadiene		0.001 U	0.001 U	0.0006 U	0.001 U	0.0006 U	0.001 U	0.0006 U	0.001 U	0.0006 U
Isopropylbenzene		0.00999	0.001 U	0.001 U	0.001 U		0.000447 J	0.0018		
Methyl Tertbutyl Ether	0.04	0.005 U	0.005 U	0.001 U	0.005 U		0.005 U			
Methylene chloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Naphthalene	0.02	0.104	0.001 U	0.001 U	0.001 U		0.00104			
n-Butylbenzene		0.0306	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00233	0.001 U
o-Xylene		0.0301	0.001 U	0.001 U	0.001 U	0.001 U	0.00194	0.009	0.00947	0.0175
Propionitrile		0.005 U	0.005 U		0.005 U		0.005 U		0.005 U	
Propylbenzene		0.0238	0.001 U	0.001 U	0.001 U		0.000586 J	0.0033	0.00382	0.0107
p-Xylene				0.002 U		0.002 U		0.0695		0.0785
sec-Butylbenzene		0.0084	0.001 U	0.001 U	0.001 U		0.001 U	0.001 U		
Styrene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
t-Butyl alcohol		0.1 UJ	0.1 UJ		0.1 UJ		0.1 UJ		0.1 UJ	
tert-Butylbenzene		0.00387	0.001 U	0.001 U	0.001 U		0.001 U			
Tetrachloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Tetrahydrofuran		0.05 UJ	0.05 UJ	R	0.05 U	R	0.05 U		0.05 U	
Toluene	1	0.00611	0.001 U	0.001 U	0.001 U		0.00283			
Total Trihalomethane				0.004 U		0.004 U		0.004 U		0.004 U
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U			
trans-1,3-Dichloropropene		0.001 U	0.001 U	0.0005 U	0.001 U		0.001 U			
trans-1,4-Dichloro-2-butene		0.01 U	0.01 U		0.01 U		0.01 U		0.01 U	
Trichloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U		0.001 U			
Trichlorofluoromethane		0.001 U	0.001 U	0.002 U	0.001 U		0.001 U			
Vinyl acetate				0.005 U		0.005 U		0.005 U		0.005 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			
Xylene, m/p		0.0359	0.001 U		0.001 U		0.00776		0.0391	
Xylenes, Total	10			0.003 U		0.003 U		0.0785		0.096
Metals, Total (mg/L)										
Lead	0.015	0.924 J	0.000429 J		0.0059 J		0.00201 J		0.0173 J	
Metals, Dissolved (mg/L)										
Lead	0.015	0.00817 J	0.001 U		0.000397 J		0.001 U		0.001 U	

		MW-14D	MW-14D	MW-15	MW-15	MW-15D	MW-20	MW-20D	MW-20D	MW-21
		IVIVV-14D	RI23-	RI22-	RI23-	RI23-	10100-20	IVIVV-ZOD	RI23-	RI22-
	RIDEM	RI22-MWS14D01	-	GWSMW1501	GWSMW1502		RI22-GWSM2002	R122-M/MS20D01	-	GWSMW2102
	GA GO	5/18/2007	6/26/2007	1/30/2006	6/26/2007	6/25/2007	6/26/2007	5/31/2007	6/26/2007	6/26/2007
param.name	(mg/L)	10-20 ft	10-20 ft	2-12 ft	2-12 ft	10.2-15.2 ft	2-12 ft	10-20 ft	10-20 ft	2-12 ft
Volatile Organics by 8011 (mg/L)	(IIIg/L)	10-20 10	10-2011	Z-12 II	Z-12 It	10.2-13.2 10	Z-12 II	10-20 11	10-20 10	Z-12 It
1,2-Dibromo-3-chloropropane	0.0002			0.0000431 U						
1,2-Dibromoethane	0.00005			0.0000431 U						
Volatile Organics (mg/L)	0.00003			0.0000213 0						
1,1,1,2-Tetrachloroethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L
1,1,1-Trichloroethane	0.2		0.001 U	0.001 U	0.001 U	0.001 U				
1,1,2,2-Tetrachloroethane	0.2	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
		0.0005 0	0.0005 0	0.001 U	0.0005 0	0.0005 0	0.0005 0	0.0005 0	0.0005 0	0.0005 C
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.005	0.001 U	0.004.11		0.004.11	0.001 U	0.001 U	0.004.11	0.004.11	0.004.1
1,1,2-Trichloroethane 1.1-Dichloroethane	0.005	0.001 U	0.001 U 0.001 U	0.001 U	0.001 U 0.001 U	0.001 U				
,	0.007			0.001 U						
1,1-Dichloroethene	0.007	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,1-Dichloropropene		0.002 U	0.002 U	0.001 U	0.002 U	0.002 U				
1,2,3-Trichlorobenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,2,3-Trichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,2,4-Trichlorobenzene	0.07	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,2,4-Trimethylbenzene		0.0616	0.0035	0.00974	0.0017	0.0315				
1,2-Dibromo-3-chloropropane	0.0002	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U				
1,2-Dibromoethane	0.00005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,2-Dichloropropane	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,3,5-Trimethylbenzene		0.0141	0.0047	0.00392	0.001 U					
1,3-Dichlorobenzene	0.6		0.001 U	0.001 U	0.001 U	0.001 U				
1,3-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,4-Dichlorobenzene	0.075	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
1,4-Dioxane		R	R	0.1 UJ	R	R	R	R	R	R
1-Chlorohexane		0.001 U	0.001 U		0.001 U	0.001 U				
2,2-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
2-Butanone		R	R	0.01 U	R	R	R	R	R	R
2-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
2-Hexanone		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U				
4-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
4-iso-Propyltoluene		0.001 U	0.001 U	0.000667 J	0.001 U					
4-Methyl-2-pentanone		0.025 U	0.025 U	R	0.025 U					
Acetone		R	R	0.00328 J	R	R	R	R	R	R
Acrylonitrile				R						
Benzene	0.005	0.756	0.289	0.001 U	0.004	0.38				
Bromobenzene		0.002 U	0.002 U	0.001 U	0.002 U	0.002 U				
Bromochloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
Bromodichloromethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
Bromoform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
Bromomethane		0.002 U	0.002 U	0.001 U	0.002 U	0.002 U				
Butane, 2-methoxy-2-methyl-		0.001 U	0.001 U	0.01 U	0.001 U	0.001 U				
Carbon disulfide		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
Carbon tetrachloride	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorobenzene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U				
Chlorodibromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 L

		MW-14D	MW-14D	MW-15	MW-15	MW-15D	MW-20	MW-20D	MW-20D	MW-21
			RI23-	RI22-	RI23-	RI23-			RI23-	RI22-
	RIDEM	RI22-MWS14D01		GWSMW1501	GWSMW1502		RI22-GWSM2002	RI22-MWS20D01		GWSMW2102
	GA GO	5/18/2007	6/26/2007	1/30/2006	6/26/2007	6/25/2007	6/26/2007	5/31/2007	6/26/2007	6/26/2007
param.name	(mg/L)	10-20 ft	10-20 ft	2-12 ft	2-12 ft	10.2-15.2 ft	2-12 ft	10-20 ft	10-20 ft	2-12 ft
Chloroethane		0.002 U	0.002 U	0.001 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Chloroform		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Chloromethane		0.002 U	0.002 UJ	0.001 U	0.002 UJ			0.002 U	0.002 U	0.002 U
Cis-1,2-Dichloroethene	0.07	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,3-Dichloropropene		0.0005 U	0.0005 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Dibromomethane		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Dichlorodifluoromethane		0.002 U	0.002 U	0.001 U	0.002 UJ	0.002 UJ	0.002 U	0.002 U	0.002 U	0.002 U
Diethyl ether		0.001 U	0.001 U	0.01 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Diisopropylether		0.001 U	0.001 U	0.01 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Ethyl benzene	0.7	0.143	0.0848	0.00189	0.0016	0.102	0.001 U	0.001 U	0.001 U	0.001 U
Ethyl-t-Butyl Ether		0.001 U	0.001 U	0.01 U	0.001 U			0.001 U		0.001 U
Hexachlorobutadiene		0.0006 U	0.0006 U	0.001 U	0.0006 U		0.0006 U	0.0006 U	0.0006 U	0.0006 U
Isopropylbenzene		0.0055	0.0047	0.000656 J	0.001 U	0.0093	0.001 U	0.001 U	0.001 U	0.0031
Methyl Tertbutyl Ether	0.04	0.001 U	0.001 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Methylene chloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Naphthalene	0.02	0.0152	0.0312	0.00182	0.001 U	0.0304	0.001 U	0.001 U	0.001 UJ	0.001 U
n-Butylbenzene		0.001 U	0.001 U	0.00123	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
o-Xylene		0.0132	0.017	0.00206	0.0019	0.0845	0.001 U	0.001 U	0.001 U	0.001 U
Propionitrile				0.005 U						
Propylbenzene		0.0142	0.013	0.00154	0.001	0.0189	0.001 U	0.001 U	0.001 U	0.0025
p-Xylene			0.0739		0.0036	0.132	0.002 U	0.002 U	0.002 U	0.002 U
sec-Butylbenzene		0.001 U	0.001 U	0.000482 J	0.001 U	0.0026	0.001 U	0.001 U	0.001 U	0.002
Styrene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
t-Butyl alcohol				0.1 UJ						
tert-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Tetrahydrofuran		R	R	0.05 U	R	R	R	R	R	R
Toluene	1	0.0562	0.132	0.000368 J	0.001 U	0.0805	0.001 U	0.001 U	0.001 U	0.001 U
Total Trihalomethane		0.004 U	0.004 U		0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
trans-1,3-Dichloropropene		0.0005 U	0.0005 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
trans-1,4-Dichloro-2-butene				0.01 U						
Trichloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Trichlorofluoromethane		0.002 U	0.002 U	0.001 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Vinyl acetate		0.005 U			0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylene, m/p		0.343		0.00618						
Xylenes, Total	10	0.356	0.0909		0.0055	0.216	0.003 U	0.003 U	0.003 U	0.003 U
Metals, Total (mg/L)										
Lead	0.015			0.151 J						
Metals, Dissolved (mg/L)										
Lead	0.015			0.0201						

	İ	MW-21D	MW-22	MW-22D	MW-24D
		RI23-	RI23-	RI23-	RI23-
	RIDEM	GWSMW21D02	GWSMW2202	GWSMW22D02	GWSMW24D02
	GA GO	6/26/2007	6/27/2007	6/27/2007	6/27/2007
param.name	(mg/L)	12.5-17.5 ft	2-12 ft	12-17 ft	10-15 ft
Volatile Organics by 8011 (mg/L)					
1,2-Dibromo-3-chloropropane	0.0002				
1,2-Dibromoethane	0.00005				
Volatile Organics (mg/L)					
1,1,1,2-Tetrachloroethane		0.001 U	0.001 U	0.001 U	0.001 U
1,1,1-Trichloroethane	0.2	0.001 U	0.001 U	0.001 U	0.001 U
1,1,2,2-Tetrachloroethane		0.0005 U	0.0005 U	0.0005 U	0.0005 U
1,1,2-Trichloro-1,2,2-Trifluoroethane					
1,1,2-Trichloroethane	0.005	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethane		0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloroethene	0.007	0.001 U	0.001 U	0.001 U	0.001 U
1,1-Dichloropropene		0.002 U	0.002 U	0.002 U	0.002 U
1,2,3-Trichlorobenzene		0.001 U	0.001 U	0.001 U	0.001 U
1,2,3-Trichloropropane		0.001 U	0.001 U	0.001 U	0.001 U
1,2,4-Trichlorobenzene	0.07	0.001 U	0.001 U	0.001 U	0.001 U
1,2,4-Trimethylbenzene		0.0032	0.001 U	0.001 U	0.001 U
1,2-Dibromo-3-chloropropane	0.0002	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dibromoethane	0.00005	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U
1,2-Dichloroethane	0.005	0.001 UJ	0.001 U	0.001 U	0.001 U
1,2-Dichloropropane	0.005	0.001 U	0.001 U	0.001 U	0.001 U
1,3,5-Trimethylbenzene		0.0062	0.001 U	0.001 U	0.001 U
1,3-Dichlorobenzene	0.6	0.001 U	0.001 U	0.001 U	0.001 U
1,3-Dichloropropane	0.0	0.001 U	0.001 U	0.001 U	0.001 U
1,4-Dichlorobenzene	0.075	0.001 U	0.001 U	0.001 U	0.001 U
1,4-Dioxane	0.0.0	R	R	R	R
1-Chlorohexane		0.001 U	0.001 U	0.001 U	0.001 U
2,2-Dichloropropane		0.001 U	0.001 U	0.001 U	0.001 U
2-Butanone		R	R	R	R
2-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U
2-Hexanone		0.01 U	0.01 U	0.01 U	0.01 U
4-Chlorotoluene		0.001 U	0.001 U	0.001 U	0.001 U
4-iso-Propyltoluene		0.001 U	0.001 U	0.001 U	0.001 U
4-Methyl-2-pentanone		0.025 U	0.025 U	0.025 U	0.025 U
Acetone		R	R	R	R
Acrylonitrile					
Benzene	0.005	0.0954	0.0012	0.001 U	0.0094
Bromobenzene	0.000	0.002 U	0.002 U	0.002 U	0.002 U
Bromochloromethane		0.001 U	0.001 U	0.001 U	0.001 U
Bromodichloromethane		0.001 U	0.001 U	0.001 U	0.001 U
Bromoform		0.001 U	0.001 U	0.001 U	0.001 U
Bromomethane		0.001 U	0.001 U	0.001 U	0.001 U
Butane, 2-methoxy-2-methyl-		0.002 U	0.001 U	0.002 U	0.002 U
Carbon disulfide		0.001 U	0.001 U	0.001 U	0.001 U
Carbon tetrachloride	0.005	0.001 U	0.001 U	0.001 U	0.001 U
Chlorobenzene	0.003	0.001 U	0.001 U	0.001 U	0.001 U
Chlorodibromomethane	0.1	0.001 U	0.001 U	0.001 U	0.001 U
SS. Salstonionioniano		0.001 0	0.001 0	0.001 0	0.0010

		MW-21D	MW-22	MW-22D	MW-24D
		RI23-	RI23-	RI23-	RI23-
	RIDEM	GWSMW21D02	GWSMW2202	GWSMW22D02	GWSMW24D02
	GA GO	6/26/2007	6/27/2007	6/27/2007	6/27/2007
param.name	(mg/L)	12.5-17.5 ft	2-12 ft	12-17 ft	10-15 ft
Chloroethane		0.002 U	0.002 U	0.002 U	0.002 U
Chloroform		0.001 U	0.001 U		
Chloromethane		0.002 U	0.002 UJ	0.002 U	0.002 UJ
Cis-1,2-Dichloroethene	0.07	0.001 U	0.001 U	0.001 U	0.001 U
cis-1,3-Dichloropropene		0.0005 U	0.0005 U	0.0005 U	0.0005 U
Dibromomethane		0.001 U	0.001 U	0.001 U	0.001 U
Dichlorodifluoromethane		0.002 U	0.002 U	0.002 U	0.002 U
Diethyl ether		0.001 U	0.001 U	0.001 U	0.001 U
Diisopropylether		0.001 U	0.001 U	0.001 U	0.001 U
Ethyl benzene	0.7	0.001 U	0.001 U	0.001 U	0.001 U
Ethyl-t-Butyl Ether		0.001 U	0.001 U	0.001 U	0.001 U
Hexachlorobutadiene		0.0006 U	0.0006 U	0.0006 U	0.0006 U
Isopropylbenzene		0.0062	0.001 U	0.001 U	0.001 U
Methyl Tertbutyl Ether	0.04	0.001 U	0.001 U	0.001 U	0.001 U
Methylene chloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U
Naphthalene	0.02	0.0014	0.001 U	0.001 U	0.001 U
n-Butylbenzene		0.0018	0.001 U	0.001 U	0.001 U
o-Xylene		0.001 U	0.001 U	0.001 U	0.001 U
Propionitrile					
Propylbenzene		0.008	0.001 U	0.001 U	0.001 U
p-Xylene		0.0038	0.002 U	0.002 U	0.001 U
sec-Butylbenzene		0.0027	0.001 U	0.001 U	0.001 U
Styrene	0.1	0.001 U	0.001 U	0.001 U	0.001 U
t-Butyl alcohol					
tert-Butylbenzene		0.001 U	0.001 U	0.001 U	0.001 U
Tetrachloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U
Tetrahydrofuran		R	R	R	R
Toluene	1	0.0018	0.001 U	0.001 U	0.001 U
Total Trihalomethane		0.004 U	0.004 U	0.004 U	0.004 U
trans-1,2-Dichloroethene	0.1	0.001 U	0.001 U	0.001 U	0.001 U
trans-1,3-Dichloropropene		0.0005 U	0.0005 U	0.0005 U	0.0005 U
trans-1,4-Dichloro-2-butene					
Trichloroethene	0.005	0.001 U	0.001 U	0.001 U	0.001 U
Trichlorofluoromethane		0.002 U	0.002 U	0.002 U	0.002 U
Vinyl acetate		0.005 U	0.005 U	0.005 U	0.005 U
Vinyl chloride	0.002	0.001 U	0.001 U	0.001 U	0.001 U
Xylene, m/p					
Xylenes, Total	10	0.0038	0.003 U	0.003 U	0.003 U
Metals, Total (mg/L)					
Lead	0.015				
Metals, Dissolved (mg/L)					
Lead	0.015				

NOTES:

ft - feet (below ground surface)

GA - GA classified aquifer

GB - GB classified aquifer

GO - Groundwater Objectives

J - result is estimated

MG/L - milligrams per liter

R - rejected result

RIDEM - Rhode Island Dept. of Env. Mgmt.

U - not detected

APPENDIX K RISK ASSESSMENT SUPPORTING INFORMATION

Particulate Emission Factor

CALCULATION OF THE PARTICULATE EMISSION FACTOR - SOIL TO AMBIENT AIR

EQUATIONS:

PEF (m³/kg) = Q/C x [(3600 s/hr) / ((0.036 x (1-V) x $(U_m/U_t)^3$ x F(x))]

PARAMETER/DEFINITION	UNITS	DEFAULT
PEF / particulate emission factor	m³/kg	1.16E+09 Calculated
Q/C / inverse of the mean concentration at the center of a 0.5-acre-square source	g/m ² -s per kg/m ³	71.35 USEPA, 1996 (value for Hartford, CT)
V / Fraction of vegetative cover	unitless	0.5 USEPA, 1996
U _m / mean annual windspeed	m/s	4.51 Annual for Worcester, MA
$U_{\rm t}$ / equivalent threshold value of windspeed at 7 m	m/s	(10.1 mi/hr) 11.32 USEPA, 1996
x / calculated as 0.886 (Ut/Um)		2.22
F(x) / function dependant on U _m /U _t derived using Cowherd et al. (1985)	unitless	0.194 Cowherd et al. (1985) Figure 4-3

Source: USEPA, 1996. Soil Screening Guidance. EPA/540/R-95/128.

Volatilization Factor

TABLE CALCULATION OF THE VOLATILIZATION FACTOR - SOIL TO AMBIENT AIR

EQUATIONS:

VF (m³/kg) = Q/C x (3.14 x D_A x T)^{1/2} x
$$10^{-4}$$
(m²/cm²) / (2 x P_b x D_A)

where

$$DA = [(O_a^{10/3} D_i H' + O_w^{10/3} D_w)/n^2] / P_b K_d + O_w + O_a H'$$

PARAMETER/DEFINITION	UNITS	DEFAULT
VF / volatilization factor	m³/kg	Calculated
D _A / apparent diffusivity	cm²/s	Calculated
Q/C / inverse of the mean concentration at the center of a 0.5-acre-square source	g/m ² -s per kg/m ³	71.35 USEPA, 1996 (value for Hartford, CT)
T / exposure interva	s	7.9E+08
II / dw. acil bulk danait.	g/cm ³	25 yr C/I worker
$\Pi_{\rm b}$ / dry soil bulk density	g/cm	1.62 USEPA, 2002
O _a / air-filled soil porosity	L _{air} /L _{soil}	0.314
	all 30ll	USEPA, 2002
n / total soil porosity	L_{pore}/L_{soil}	0.39
		USEPA, 2002
O _w / water-filled soil porosity	L _{water} /L _{soil}	0.076 USEPA, 2002
$\Psi_{ m s}$ / soil particle density	g/cm³	2.65
		USEPA, 1996
D _i / diffusivity in air	cm²/s	chemical-specific
H' / Henry's Law constant	dimensionless	chemical-specific
D _w / diffusivity in water	cm²/s	chemical-specific
K_d / soil-water partition coefficient (K_{oc} x f_{oc}) organics	cm³/g	chemical-specific
K _{oc} / soil organic carbon partition coefficient	cm³/g	chemical-specific
f _{oc} / fraction organic	g/g	0.006
carbon in soil		Default

Source: USEPA, 1996. Soil Screening Guidance. EPA/540/R-95/128.

USEPA, 2002. Johnson and Ettinger Model; these parameter values are the same values used to represent overburden soil conditions in the groundwater to indor air vapor intrusion model for this site.

TABLE (CONT) CALCULATION OF THE VOLATILIZATION FACTOR - SOIL TO AMBIENT AIR

CHEMICAL	D _i (cm²/s)	H'	D _w (cm ² /s)	K _d (cm³/g)	K _{oc} (cm³/g)	D _A (cm²/s)	VF (m³/kg)
1,2,4-Trimethylbenzene	7.50E-02	2.34E-01	7.10E-06	2.23E+01	3.72E+03	6.68E-05	13407
1,3,5-Trimethylbenzene	7.50E-02	3.16E-01	7.10E-06	4.91E+00	8.19E+02	4.03E-04	5457
4-iso-Propyltoluene				0.00E+00		NA	
Naphthalene	5.90E-02	2.00E-02	7.90E-06	7.20E+00	1.20E+03	1.39E-05	29390
o-Xylene	7.00E-02	3.00E-01	7.80E-06	2.46E+00	4.10E+02	6.99E-04	4144
2-Methylnaphthalene	5.90E-02	2.00E-02	7.90E-06	7.20E+00	1.20E+03	1.39E-05	29390

Source of Di, H, Dw, and Koc values: USEPA, 2004. USEPA Region IX PRG Table

CALCULATION OF AMBIENT AIR CONCENTRATIONS FOR SOIL

COMPOUND	MEDIUM EPC (mg/kg)	VF-SOIL (m3/kg)	Ambient Air Conc. Soil [a] (mg/m3)
1,2,4-Trimethylbenzene	1.56E+02	1.34E+04	1.16E-02
1,3,5-Trimethylbenzene	1.74E+02	5.46E+03	3.19E-02
4-iso-Propyltoluene	3.07E+01		NA
Naphthalene	8.44E+00	2.94E+04	2.87E-04
o-Xylene	1.57E+01	4.14E+03	3.79E-03
2-Methylnaphthalene	4.68E+00	2.94E+04	1.59E-04

Notes:

NA= Not applicable/Not available

[a] Ambient air concentration (associated with soil) = Maximum Soil Concentration / VF-Soil Checked by: JHP

Johnson-Ettinger Model (Vapor Intrusion)

GW-ADV Version 3.1; 02/04 Table 1

Reset to Defaults

END

3.1; 02/04 set to		YES	OR]								
faults	CALCULATE IN	CREMENTAL RIS	KS FROM ACTU	AL GROUNDW	ATER CONCENTE	RATION (enter "X" in	"YES" box and initial	I groundwater con	nc. below)			
		YES	Х]								
	ENTER Chemical CAS No. (numbers only,	ENTER Initial groundwater conc., C _W			0							
	no dashes)	(μg/L)	=		Chemical							
	95636	5.33E-01]	1	,2,4-Trimethylbe	enzene						
	ENTER	ENTER Depth	ENTER	ENTER Totals mu	ENTER st add up to value o	,	ENTER	ENTER	ENTER Soil		ENTER	
MORE ↓	Average soil/ groundwater temperature, T _S (°C)	below grade to bottom of enclosed space floor, L _F (cm)	Depth below grade to water table, L _{WT} (cm)	Thickness of soil stratum A, h _A (cm)	Thickness of soil stratum B, (Enter value or 0) h _B (cm)	Thickness of soil stratum C, (Enter value or 0) h _C (cm)	Soil stratum directly above water table, (Enter A, B, or C)	SCS soil type directly above water table	stratum A SCS soil type (used to estimate soil vapor permeability)	OR	User-defined stratum A soil vapor permeability, k _v (cm ²)	
	10	15	90	90			A	LS	LS			
	10	15	90	90			A		LS			ı
MORE ↓	ENTER Stratum A SCS soil type Lookup Soil Parameters	ENTER Stratum A soil dry bulk density,	porosity, n ^A	ENTER Stratum A soil water-filled porosity, θ_w^A	ENTER Stratum B SCS soil type Lookup Soil Parameters	ENTER Stratum B soil dry bulk density,	ENTER Stratum B soil total porosity, n ^B	Stratum B soil water-filled porosity,	ENTER Stratum C SCS soil type Lookup Soil Parameters	ENTER Stratum C soil dry bulk density,	ENTER Stratum C soil total porosity, n ^C	ENTER Stratum C soil water-filled porosity, θ_w^C
		(g/cm ³)	(unitless)	(cm ³ /cm ³)		(g/cm ³)	(unitless)	(cm ³ /cm ³)		(g/cm ³)	(unitless)	(cm ³ /cm ³)
	LS	1.62	0.390	0.076	С	1.43	0.459	0.215	С	1.43	0.459	0.215
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor			
₩	space floor thickness,	Soil-bldg. pressure differential,	space floor length,	space floor width,	Enclosed space height,	Floor-wall seam crack width,	Indoor air exchange rate,	Le	flow rate into bldg. OR eave blank to calcula	ate		
	L _{crack}	ΔΡ	L_{B}	W _B	H _B	W	ER		Q_{soil}			
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	=	(L/m)			
	10	40	1000	1000	305	0.1	1					
MORE ↓	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	EXPOSURE frequency, EF (days/yr)	ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)						
	70	25	25	250	1.0E-06	1						
FND						late risk-based						

groundwater concentration.

INTERMEDIATE CALCULATIONS SHEET

Table 1 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

1,2,4-Trimethylbenzene

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm³/cm³)	Stratum B soil air-filled porosity, θ_a^B (cm^3/cm^3)	Stratum C soil air-filled porosity, $\theta_a{}^c$ (cm³/cm³)	Stratum A effective total fluid saturation, S _{te} (cm³/cm³)	Stratum A soil intrinsic permeability, k _i (cm²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n_{cz} (cm^3/cm^3)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm^3/cm^3)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} C (cm ² /s)	Capillary zone effective diffusion coefficient, Deff cz (cm²/s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	11,692	2.16E-03	9.30E-02	1.75E-04	8.42E-03	0.00E+00	0.00E+00	1.30E-04	4.95E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)			
15	4.95E+01	0.10	1.56E+01	8.42E-03	4.00E+02	1.39E+20	5.70E-05	2.83E-03	NA	6.0E-03]		

GW-ADV Version 3.1; 02/

> Reset to Defaults

> > END

3.1; 02/04				-								
		YES										
et to			OR									
aults	CALCULATE IN	CREMENTAL RISI	KS FROM ACTUA	L GROUNDW	ATER CONCENTR	ATION (enter "X" in	"YES" box and initial	groundwater con	c. below)			
						,			,			
		YES	X									
	ENTER	ENTER										
	ENTER	ENTER Initial										
	Chemical	groundwater										
	CAS No.	conc.,										
	(numbers only,	C _w										
	no dashes)	(μg/L)	=		Chemical							
	1000=0		1									
	108678	1.96E-01]	1	,3,5-Trimethylbe	nzene						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	Ī
	ENIER	Depth	ENTER		ist add up to value o		ENTER	ENTER	Soil		ENTER	
MORE	Average	below grade		. 5.6.5 1116	Thickness	Thickness			stratum A		User-defined	
₩ -	soil/	to bottom	Depth	Thickness	of soil	of soil	Soil		SCS		stratum A	
	groundwater	of enclosed	below grade	of soil	stratum B,	stratum C,	stratum	SCS	soil type		soil vapor	
	temperature,	space floor,	to water table,	stratum A,	(Enter value or 0)	,	directly above	soil type	(used to estimate	OR	permeability,	
	T _S	L_{F}	L_{WT}	h _A	h _B	h _C	water table,	directly above	soil vapor		k _v	
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability)		(cm ²)	
	10	15	90	90			A	LS	LS			
	10	15	90	90			Α	LS	LS			
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C
Ψ	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,
	Lookup Soil	ρ _b ^A	n ^A	θ_w^A	Lookup Soil	ρ_b^B	n ^B	θ_{w}^{B}	Lookup Soil	ρ_b^C	n ^C	θ_{w}^{C}
	Parameters	ρ _δ (g/cm ³)		(cm ³ /cm ³)	Parameters	ρ _ь (g/cm³)		(cm ³ /cm ³)	Parameters	ρ _ь (g/cm ³)		(cm ³ /cm ³)
		(g/ciii)	(unitless)	(CIII /CIII)		(g/ciii)	(unitless)	(CIII /CIII)		(g/ciii)	(unitless)	(CIII /CIII)
	LS	1.62	0.390	0.076	С	1.43	0.459	0.215	С	1.43	0.459	0.215
		•						•				
1105-	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE J	Enclosed	Soil-bldg.	Enclosed space	Enclosed	Enclosed	Floor-wall	Indoor		Average vapor flow rate into bldg.			
	space floor	pressure	floor	space floor	space	seam crack	air exchange		OR			
	thickness,	differential,	length,	width,	height,	width,	rate,	Le	eave blank to calcula	ite		
	L_{crack}	ΔΡ	L _B	W_B	H _B	w	ER		Q_{soil}			
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	_	(L/m)			
		1	1					-				
	10	40	1000	1000	305	0.1	1	_				
MORE	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER						
₩	Averaging	Averaging			Target	Target hazard						
	time for	time for	Exposure	Exposure	risk for	quotient for						
	carcinogens,	noncarcinogens,	duration,	frequency,	carcinogens,	noncarcinogens,						
	AT _C	AT _{NC}	ED	EF ()	TR	THQ						
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)						
	70	25	25	250	1.0E-06	1						
END					Used to calcu	late risk-based						

groundwater concentration.

INTERMEDIATE CALCULATIONS SHEET

Table 2 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

1,3,5-Trimethylbenzene

Exposure duration,	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm³/cm³)	Stratum C soil air-filled porosity, θ_a^C (cm³/cm³)	Stratum A effective total fluid saturation, S _{te} (cm³/cm³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{CZ} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm^3/cm^3)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Stratum A effective diffusion coefficient, D ^{eff} A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	11,678	2.07E-03	8.89E-02	1.75E-04	8.36E-03	0.00E+00	0.00E+00	1.30E-04	4.98E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (μg/m³)-1	Reference conc., RfC (mg/m³)			
15	1.74E+01	0.10	1.56E+01	8.36E-03	4.00E+02	1.89E+20	5.72E-05	9.97E-04	NA	6.0E-03			

DATA ENTRY SHEET Table 3 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater Benzene **GW-ADV** CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Reset to OR **Defaults** CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES Χ **ENTER ENTER** Initial Chemical groundwater CAS No. conc., (numbers only, C_W no dashes) $(\mu g/L)$ Chemical 71432 2.02E-01 Benzene **ENTER ENTER ENTER ENTER ENTER ENTER ENTER** ENTER **ENTER** ENTER Depth Totals must add up to value of LWT (cell G28) Soil MORE below grade Thickness Thickness stratum A User-defined Average $\mathbf{\Psi}$ soil/ to bottom Depth Thickness of soil of soil SCS stratum A Soil of enclosed below grade of soil stratum B. stratum C. stratum SCS soil vapor groundwater soil type temperature, space floor, to water table, stratum A, (Enter value or 0) (Enter value or 0) directly above soil type (used to estimate OR permeability T_S directly above soil vapor L_F L_{WT} h_A h_B h_{c} water table, k_v (°C) (cm) (cm) (cm) (cm) (cm) (Enter A, B, or C) water table permeability) (cm²) 10 15 90 90 LS LS Α **ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER** MORE Stratum A Stratum A Stratum B Stratum A Stratum A Stratum B Stratum B Stratum B Stratum C Stratum C Stratum C Stratum C Ψ SCS soil dry soil water-filled SCS soil total soil water-filled SCS soil water-filled soil total soil dry soil dry soil total soil type bulk density, porosity, porosity, soil type bulk density, porosity, porosity, soil type bulk density, porosity, porosity, n^A n^B θ_w^B $\rho_b^{\ C}$ n^{C} θ_w^C ρ_b^A θ_w^A ρ_b^B Lookup Soil Lookup Soil Lookup Soil Parameters Parameters Parameters (g/cm³) (cm³/cm³) (cm³/cm³) (cm³/cm³) (unitless) (g/cm³) (g/cm³) (unitless) (unitless) LS 1.62 0.390 0.076 С 1.43 0.459 0.215 С 1.43 0.459 0.215 **ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER** MORE Enclosed Enclosed Enclosed Average vapor $\mathbf{\Psi}$ space Soil-bldg. space space Enclosed Floor-wall Indoor flow rate into bldg. floor pressure floor floor space seam crack air exchange OR thickness, differential, length, width, height, width, Leave blank to calculate rate, \mathbf{Q}_{soil} ΔP ER L_{crack} L_B W_B H_B W (cm) (q/cm-s²) (cm) (cm) (1/h) (L/m) (cm) (cm) 10 40 1000 1000 305 0.1 1 MORE **ENTER ENTER ENTER ENTER ENTER ENTER** Ψ Averaging Averaging Target hazard Target time for risk for quotient for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, carcinogens, noncarcinogens, AT_NC AT_{C} ED EF TR THQ (unitless) (unitless) (yrs) (yrs) (days/yr) (yrs) 25 70 25 250 1.0E-06

Used to calculate risk-based

groundwater concentration.

INTERMEDIATE CALCULATIONS SHEET

Table 3 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

Benzene

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, $\theta_a^{\ B}$ (cm³/cm³)	Stratum C soil air-filled porosity, $\theta_a{}^C$ (cm³/cm³)	Stratum A effective total fluid saturation, S _{te} (cm³/cm³)	Stratum A soil intrinsic permeability, k _i (cm²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n_{cz} (cm^3/cm^3)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm^3/cm^3)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, Deff C (cm²/s)	Capillary zone effective diffusion coefficient, $D^{\rm eff}_{cz}$ $({\rm cm}^2/{\rm s})$	Total overall effective diffusion coefficient, D^{eff}_{T} (cm ² /s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	8,122	2.68E-03	1.15E-01	1.75E-04	1.22E-02	0.00E+00	0.00E+00	1.83E-04	7.02E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)	-		
15	2.33E+01	0.10	1.56E+01	1.22E-02	4.00E+02	7.44E+13	7.16E-05	1.67E-03	7.8E-06	3.0E-02]		

Table 4 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater Cumene **GW-ADV** CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Reset to OR **Defaults** CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES Χ **ENTER ENTER** Initial Chemical groundwater CAS No. conc., (numbers only, C_W no dashes) $(\mu g/L)$ Chemical 98828 2.40E-02 Cumene **ENTER ENTER ENTER ENTER ENTER ENTER ENTER** ENTER **ENTER** ENTER Depth Totals must add up to value of LWT (cell G28) Soil MORE below grade Thickness Thickness stratum A User-defined Average $\mathbf{\Psi}$ soil/ to bottom Depth Thickness of soil of soil SCS stratum A Soil of enclosed below grade of soil stratum B. stratum C. stratum SCS soil vapor groundwater soil type temperature, space floor, to water table, stratum A, (Enter value or 0) (Enter value or 0) directly above soil type (used to estimate OR permeability T_S directly above soil vapor L_F L_{WT} h_A h_B h_{c} water table, k_v (°C) (cm) (cm) (cm) (cm) (cm) (Enter A, B, or C) water table permeability) (cm²) 10 15 90 90 LS LS Α **ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER** MORE Stratum A Stratum A Stratum B Stratum A Stratum A Stratum B Stratum B Stratum B Stratum C Stratum C Stratum C Stratum C Ψ SCS soil dry soil water-filled SCS soil total soil water-filled SCS soil water-filled soil total soil dry soil dry soil total soil type bulk density, porosity, porosity, soil type bulk density, porosity, porosity, soil type bulk density, porosity, porosity, n^A n^B θ_w^B $\rho_b^{\ C}$ n^{C} θ_w^C ρ_b^A θ_w^A ρ_b^B Lookup Soil Lookup Soil Lookup Soil Parameters Parameters Parameters (g/cm³) (cm³/cm³) (cm³/cm³) (cm³/cm³) (unitless) (g/cm³) (g/cm³) (unitless) (unitless) LS 1.62 0.390 0.076 С 1.43 0.459 0.215 С 1.43 0.459 0.215 **ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER** MORE Enclosed Enclosed Enclosed Average vapor $\mathbf{\Psi}$ space Soil-bldg. space space **Enclosed** Floor-wall Indoor flow rate into bldg. floor pressure floor floor space seam crack air exchange OR thickness, differential, length, width, height, width, Leave blank to calculate rate, ΔP ER Q_{soil} L_{crack} L_B W_B H_B W (cm) (q/cm-s²) (cm) (cm) (1/h) (L/m) (cm) (cm) 10 40 1000 1000 305 0.1 1 MORE **ENTER ENTER ENTER ENTER ENTER ENTER** Ψ Averaging Averaging Target hazard Target time for quotient for time for Exposure Exposure risk for carcinogens, noncarcinogens, duration, frequency, carcinogens, noncarcinogens, AT_NC AT_{C} ED EF TR THQ (unitless) (unitless) (yrs) (yrs) (days/yr) (yrs) 25 70 25 250 1.0E-06 Used to calculate risk-based END groundwater concentration.

INTERMEDIATE CALCULATIONS SHEET

Table 4 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

Cumene

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_{\text{a}}^{\text{ A}} \\ \text{(cm}^{3}/\text{cm}^{3}) \end{array}$	Stratum B soil air-filled porosity, $\theta_a^{\ B}$ (cm^3/cm^3)	Stratum C soil air-filled porosity, $\theta_a{}^C$ (cm³/cm³)	Stratum A effective total fluid saturation, S_{te} (cm^3/cm^3)	Stratum A soil intrinsic permeability, k _i (cm²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n_{cz} (cm^3/cm^3)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ_{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, Deff C (cm²/s)	Capillary zone effective diffusion coefficient, Deff cz (cm²/s)	Total overall effective diffusion coefficient, Deff_T (cm²/s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	12,644	4.71E-03	2.03E-01	1.75E-04	9.03E-03	0.00E+00	0.00E+00	1.32E-04	5.06E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (μg/m³)-1	Reference conc., RfC (mg/m³)	-		
15	4.87E+00	0.10	1.56E+01	9.03E-03	4.00E+02	6.03E+18	5.79E-05	2.82E-04	NA	4.0E-01			

MORE ↓	

ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)	ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)
70	25	25	250	1.0E-06	1
					late risk-based concentration.

INTERMEDIATE CALCULATIONS SHEET

Table 5 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

Naphthalene

Exposure duration, τ (sec)	Source-building separation, L_T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm³/cm³)	Stratum C soil air-filled porosity, $\theta_a^{\ C}$ (cm^3/cm^3)	Stratum A effective total fluid saturation, S _{te} (cm³/cm³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm^3/cm^3)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Stratum A effective diffusion coefficient, D ^{eff} A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	12,913	1.52E-04	6.54E-03	1.75E-04	8.20E-03	0.00E+00	0.00E+00	2.57E-04	9.39E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)			
15	1.04E+00	0.10	1.56E+01	8.20E-03	4.00E+02	4.86E+20	8.47E-05	8.80E-05	NA	3.0E-03			

END

 AT_NC

(yrs)

25

ED

(yrs)

25

EF

(days/yr)

250

TR

(unitless)

1.0E-06

Used to calculate risk-based

groundwater concentration.

 AT_{C}

(yrs)

70

THQ

(unitless)

INTERMEDIATE CALCULATIONS SHEET

Table 6 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

n-Butylbenzene

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, $\theta_a^{\ B}$ (cm^3/cm^3)	Stratum C soil air-filled porosity, $\theta_a{}^C$ (cm³/cm³)	Stratum A effective total fluid saturation, S _{te} (cm³/cm³)	Stratum A soil intrinsic permeability, k _i (cm²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n_{cz} (cm^3/cm^3)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, Deff C (cm²/s)	Capillary zone effective diffusion coefficient, Deff _{CZ} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	11,847	4.55E-03	1.96E-01	1.75E-04	7.92E-03	0.00E+00	0.00E+00	1.17E-04	4.48E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (μg/m³)-1	Reference conc., RfC (mg/m³)			
15	6.07E+00	0.10	1.56E+01	7.92E-03	4.00E+02	2.61E+21	5.32E-05	3.23E-04	NA	1.4E-01]		

(unitless)

1 of 2

(unitless)

1.0E-06

(days/yr)

250

(yrs)

25

(yrs)

70

END

(yrs)

25

INTERMEDIATE CALCULATIONS SHEET

Table 7 Calculation of Indoor Air VOC Concentrations Resulting from Vapor Migration from Groundwater

Propylbenzene

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm³/cm³)	Stratum C soil air-filled porosity, $\theta_a^{\ C}$ (cm³/cm³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	75	0.314	0.244	0.244	0.079	1.62E-08	0.957	1.55E-08	18.75	0.39	0.087	0.303	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, Deff A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, Deff _{CZ} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
8.47E+04	1.06E+06	3.77E-04	15	11,368	3.86E-03	1.66E-01	1.75E-04	8.35E-03	0.00E+00	0.00E+00	1.24E-04	4.74E-04	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (μg/m³)-1	Reference conc., RfC (mg/m³)			
15	7.97E+00	0.10	1.56E+01	8.35E-03	4.00E+02	2.05E+20	5.54E-05	4.41E-04	NA	1.4E-01			

Pro UCL Calculations

	A B C D E General UCL Statistics for	F or Data Sets	G H I J K L	L
1	User Selected Options	Data Sets	WILL HOLL-Detects	
2	-	ngs\.lav\Mv.D	ocuments\Work\ProUCL-SO-Input-A.wst	
3	Full Precision OFF	igo lody livry D	ocumentative in 1999 2 00 input 7 i.wot	
4	Confidence Coefficient 95%			
5	Number of Bootstrap Operations 2000			
6	Trainbel of Bootstap Operations			
7				
8	1,2,4-Trimethylbenzene			
9	•			
11		General	Statistics	
12	Number of Valid Samples	21	Number of Detected Data	13
13	Number of Unique Samples	13	Number of Non-Detect Data	8
14			Percent Non-Detects	38.10%
15				
16	Raw Statistics		Log-transformed Statistics	
17	Minimum Detected	0.00134	Minimum Detected	-6.615
18	Maximum Detected	1030	Maximum Detected	6.937
19	Mean of Detected	92.68	Mean of Detected	1.129
20	SD of Detected	282.3	SD of Detected	3.598
21	Minimum Non-Detect	0.00599	Minimum Non-Detect	-5.118
22	Maximum Non-Detect	0.0783	Maximum Non-Detect	-2.547
23				
24	Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	9
25	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	12
26	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	42.86%
27				
28		UCL St		
29	Normal Distribution Test with Detected Values Only	,	Lognormal Distribution Test with Detected Values Only	
30	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.929
31	5% Shapiro Wilk Critical Value	0.866	5% Shapiro Wilk Critical Value	0.866
32	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
33	Assuming Names Distribution		Assuming Lognormal Distribution	
34	Assuming Normal Distribution		Assuming Lognormal Distribution	
35	DL/2 Cubatitution Mathad			
36	DL/2 Substitution Method	57 20	DL/2 Substitution Method	0.728
	Mean	57.38	DL/2 Substitution Method Mean	-0.728
37	Mean SD	223.5	DL/2 Substitution Method Mean SD	3.729
37 38	Mean		DL/2 Substitution Method Mean	
37 38 39	Mean SD 95% DL/2 (t) UCL	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	3.729
37 38 39 40	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	3.729 17185
37 38 39 40 41	Mean SD 95% DL/2 (t) UCL	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	3.729 17185 -1.523
37 38 39 40 41 42	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	3.729 17185 -1.523 4.446
37 38 39 40 41 42 43	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	3.729 17185 -1.523 4.446 57.37
37 38 39 40 41 42 43	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	3.729 17185 -1.523 4.446 57.37 223.5
37 38 39 40 41 42 43 44	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	3.729 17185 -1.523 4.446 57.37 223.5 153
37 38 39 40 41 42 43 44 45	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5 141.5	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	3.729 17185 -1.523 4.446 57.37 223.5
37 38 39 40 41 42 43 44 45 46	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean	223.5 141.5 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.729 17185 -1.523 4.446 57.37 223.5 153
37 38 39 40 41 42 43 44 45 46 47	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	223.5 141.5 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.729 17185 -1.523 4.446 57.37 223.5 153 206.1
37 38 39 40 41 42 43 44 45 46 47 48	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only	223.5 141.5 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.729 17185 -1.523 4.446 57.37 223.5 153 206.1
37 38 39 40 41 42 43 44 45 46 47 48 49 50	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected)	223.5 141.5 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level	3.729 17185 -1.523 4.446 57.37 223.5 153 206.1
37 38 39 40 41 42 43 44 45 46 47 48 49 50	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star	223.5 141.5 N/A 0.216 429.1	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level	3.729 17185 -1.523 4.446 57.37 223.5 153 206.1
37 38 39 40 41 42 43 44 45 46 47 48 49 50	Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star	223.5 141.5 N/A 0.216 429.1 5.616	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	3.729 17185 -1.523 4.446 57.37 223.5 153 206.1

	A B C D E	F	G H I J K	L
54	5% A-D Critical Value	0.863	' ' '	F7.07
55	K-S Test Statistic	0.863	Mean	57.37
56	5% K-S Critical Value	0.261	SD	218.1
57	Data appear Gamma Distributed at 5% Significance Le	evel	SE of Mean	49.53
58			95% KM (t) UCL	142.8
59	Assuming Gamma Distribution		95% KM (z) UCL	138.8
60	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	141.4
61	Minimum	0	95% KM (bootstrap t) UCL	1006
62	Maximum	1030	95% KM (BCA) UCL	156.3
63	Mean	57.37	95% KM (Percentile Bootstrap) UCL	155.3
64	Median	0.0992	95% KM (Chebyshev) UCL	273.3
65	SD	223.5		366.7
66	k star	0.0958	99% KM (Chebyshev) UCL	550.2
67	Theta star	598.8		
68	Nu star	4.024	Potential UCLs to Use	
69	AppChi2	0.731	95% KM (BCA) UCL	156.3
70	95% Gamma Approximate UCL	315.7		
71	95% Adjusted Gamma UCL	364		
72	Note: DL/2 is not a recommended method.			
73				
74				
75	1,3,5-Trimethylbenzene			
76				
77		General	Statistics	
78	Number of Valid Samples	21	Number of Detected Data	19
79	Number of Unique Samples	19	Number of Non-Detect Data	2
80			Percent Non-Detects	9.52%
81				
82	Raw Statistics		Log-transformed Statistics	
83	Minimum Detected	0.00453	Minimum Detected	-5.397
84	Maximum Detected	326	Maximum Detected	5.787
85	Mean of Detected	22.13		-0.455
86	SD of Detected	74.2	SD of Detected	3.044
87	Minimum Non-Detect	0.00533	Minimum Non-Detect	-5.234
88	Maximum Non-Detect	0.00599	Maximum Non-Detect	-5.118
89				
90	Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	3
	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	18
92	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	14.29%
93				
94		UCL St	tatistics	
95	Normal Distribution Test with Detected Values Only	1	Lognormal Distribution Test with Detected Values Only	,
96	Shapiro Wilk Test Statistic	0.325	Shapiro Wilk Test Statistic	0.899
97	5% Shapiro Wilk Critical Value	0.901	5% Shapiro Wilk Critical Value	0.901
98	Data not Normal at 5% Significance Level	I.	Data not Lognormal at 5% Significance Level	
99				
100	Assuming Normal Distribution		Assuming Lognormal Distribution	
101	DL/2 Substitution Method		DL/2 Substitution Method	
102	Mean	20.02	Mean	-0.97
103	SD	70.71	SD	3.315
104	95% DL/2 (t) UCL	46.63	95% H-Stat (DL/2) UCL	9737
105				
106	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
100	· · ·		-	

	Α	В	С	D	E	F	G	Н	ı	J	K	L
107					Mean	11.97					Log Scale	-1.007
108					SD	75.78					Log Scale	3.373
109					MLE (t) UCL	40.5				Mean in Ori	_	20.02
110				95% ML	.E (Tiku) UCL	38.79			0=0/		ginal Scale	70.71
111										Percentile Boo	•	50.36
112										95% BCA Boo	tstrap UCL	68.11
113												
114	(Gamma Dis	tribution Test		d Values Only					ith Detected V	•	
115				k star (bi	as corrected)	0.209		Data do not fo	ollow a Disc	ernable Distrib	ution (0.05)	
116					Theta Star	106						
117					nu star	7.933						
118				A D	Test Statistic	1.659			Nonnoromo	tria Statiatica		
119					Critical Value	0.885			-	tric Statistics aplan-Meier (K	(M) Mothad	
120					Test Statistic	0.885			N.	apiari-ivielei (r	Mean	20.02
121					Critical Value	0.865					SD	69
122		oto not Gor	mma Dietribut		nificance Leve						SE of Mean	15.47
123		ala IIUl Gai	IIIIIa Distribut	eu at 5 % Sig	illilicatice Levi	5 1					KM (t) UCL	46.7
124			Assuming Gar	mma Dietribu	tion						KM (t) UCL	45.47
125					apolated Data					95% KM (jack	` '	46.63
126		Gaillilla	1100 Statistic	3 using Extre	Minimum	0			9	5% KM (boots		200.9
127					Maximum	326				•	(BCA) UCL	51.01
128					Mean	20.02			95% KM (F	Percentile Boot	, ,	50.48
129					Median	0.0762			•	5% KM (Cheby	• •	87.45
130					SD	70.71				5% KM (Cheby	,	116.6
131					k star	0.155				9% KM (Cheby	,	174
132					Theta star	129.2				(01.02)	, 551, 5.52	
133					Nu star	6.507			Potential L	ICLs to Use		
134					AppChi2	1.904				9% KM (Cheby	/shev) UCL	174
135			95% (Gamma Appr	oximate UCL	68.41					, , , , ,	
136					Gamma UCL	75.76						
137 138	Note: DL/2 i	is not a reco	ommended m	<u> </u>								
139												
140												
	4-iso-Propy	Itoluene										
142												
143						General	Statistics					
144				Number of V	alid Samples	21				Number of Det	tected Data	18
145			N	umber of Uni	que Samples	18			Nu	mber of Non-[Detect Data	3
146										Percent N	lon-Detects	14.29%
147												
148			Raw	Statistics				L	.og-transfor	ned Statistics		
149				Minim	num Detected	0.0166				Minimu	m Detected	-4.098
150				Maxim	num Detected	56.2				Maximu	m Detected	4.029
151				Mea	n of Detected	4.703				Mean	of Detected	-0.937
152				SI	D of Detected	13.14				SD	of Detected	2.341
153				Minimur	n Non-Detect	0.00533				Minimum	Non-Detect	-5.234
154				Maximur	n Non-Detect	0.00764				Maximum	Non-Detect	-4.874
155												
156	Note: Data	have multip	le DLs - Use	of KM Metho	d is recomme	nded			Numb	er treated as	Non-Detect	3
157	For all meth	ods (excep	t KM, DL/2, a	nd ROS Metl	hods),				Nu	mber treated a	s Detected	18
158	Observation	ns < Larges	t ND are treat	ed as NDs					Single D	L Non-Detect I	Percentage	14.29%
159							<u> </u>					

Normal Distribution Teat with Descricted Values Only Liganomial Distribution Teat with Descricted Values Only	100	A B C D E	F UCL St	G H I J K L	L
Saparo Ville Test Statistic 0.394		Normal Distribution Test with Detected Values Only			
Section Sect		-	0.394		0.899
Data appear Lognormal at 6% Significance Level 105		·		·	
15		·		•	
Maximum Maxi		<u> </u>			
1975 1975		Assuming Normal Distribution		Assuming Lognormal Distribution	
1.628		DL/2 Substitution Method		DL/2 Substitution Method	
1988		Mean	4.031	Mean	-1.628
171 172	169	SD	12.24	SD	2.768
Maximum Likelihood Estimate(MLE) Method	170	95% DL/2 (t) UCL	8.636	95% H-Stat (DL/2) UCL	205.1
173	171				
173	172	Maximum Likelihood Estimate(MLE) Method			
175	173				
176	174				
177	175			_	
178	176	95% MLE (Tiku) UCL	7.322	-	
	177			·	
180 Gamma Distribution Test with Detected Values Only	178			95% BCA Bootstrap UCL	12.17
181	179				
182	180			-	
182	181			Data appear Lognormal at 5% Significance Level	
193	182				
185	183	nu star	9.748		
186	184	A D T + O + C + C	4 500	No.	
187	185			•	
194	186				4.022
Data not Gamma Distributed at 5% Significance Level SE of Mean 2.681	187				
190					
191 Assuming Gamma Distribution 95% KM (z) UCL 8.443 192 Gamma ROS Statistics using Extrapolated Data 95% KM (jackknife) UCL 25.79 193 Minimum 0 95% KM (bootstrap t) UCL 25.79 194 Maximum 56.2 95% KM (BCA) UCL 9.729 195 Mean 4.031 95% KM (Percentile Bootstrap) UCL 9.126 196 Median 0.0762 95% KM (Chebyshev) UCL 15.72 197 SD 0.24 97.5% KM (Chebyshev) UCL 20.78 198 Assuming American 25.26 200 Nu star 6.702 Potential UCLs to Use 201 Mote: DL/2 is not a recommended method. 14.86 202 Maphthalene 208 Maphthalene 203 Maphthalene 208 Maphthalene 204 Number of Valid Samples 21 Number of Non-Detecte Data 20 205 Number of Unique Samples 21 Number of Non-Detecte Data 20 206 Number of Valid Samples 21 Number of Non-Detecte Data 20 207 Number of Number of Number of Non-Detected Data 20 208 Number of Number of Number of Number of Non-Detected Data 20 209 Number of Num		Data not danima Distributed at 5% Significance Leve	1		
Gamma ROS Statistics using Extrapolated Data 95% KM (jackknife) UCL 8.634 193		Assuming Gamma Distribution			
193 194 195				` '	
194 195			0	,	
195				` ' '	
196		Mean		,	
197		Median	0.0762	95% KM (Chebyshev) UCL	15.72
198		SD	12.24	97.5% KM (Chebyshev) UCL	20.78
Theta star 25.26		k star	0.16	99% KM (Chebyshev) UCL	30.71
Nu star 6.702 Potential UCLs to Use		Theta star	25.26		
201		Nu star	6.702	Potential UCLs to Use	
202 95% Gamma Approximate UCL 13.45 203 95% Adjusted Gamma UCL 14.86 204 Note: DL/2 is not a recommended method. 205		AppChi2	2.009	99% KM (Chebyshev) UCL	30.71
203 95% Adjusted Gamma UCL 14.86		95% Gamma Approximate UCL	13.45		
Note: DL/2 is not a recommended method.		95% Adjusted Gamma UCL	14.86		
205 206 207 Naphthalene 208 209 General Statistics 210 Number of Valid Samples 21 Number of Detected Data 20 211 Number of Unique Samples 20 Number of Non-Detect Data 1		Note: DL/2 is not a recommended method.			
206 207 Naphthalene 208 General Statistics 209 Unmber of Valid Samples 210 Number of Detected Data 20 211 Number of Non-Detect Data 1 212 Number of Unique Samples 20 Number of Non-Detect Data 1 Paraget New Patrett 4 75%					
Naphthalene 208 Comparison of Valid Samples 21 Number of Detected Data 20 Number of Unique Samples 20 Number of Non-Detect Data 1 Parcent New Parc					
208 209 General Statistics 210 Number of Valid Samples 21 Number of Detected Data 20 211 Number of Unique Samples 20 Number of Non-Detect Data 1		Naphthalene			
Comparison					
Number of Valid Samples 21 Number of Detected Data 20 Number of Unique Samples 20 Number of Non-Detect Data 1			General S	Statistics	
Number of Unique Samples 20 Number of Non-Detect Data 1		Number of Valid Samples	21	Number of Detected Data	20
Percent New Peterte 4.769/		Number of Unique Samples	20	Number of Non-Detect Data	1
212	212			Percent Non-Detects	4.76%

	A B C D E	F	G H I J K	L
213	Raw Statistics		Log-transformed Statistics	
214	Minimum Detected	0.00445		-5.415
215	Maximum Detected	9.91	Maximum Detected	2.294
216	Mean of Detected	1.671	Mean of Detected	-1.503
217	SD of Detected	3.21	SD of Detected	2.254
218				-4.423
219	Minimum Non-Detect Maximum Non-Detect	0.012	Minimum Non-Detect	
220	Maximum Non-Detect	0.012	Maximum Non-Detect	-4.423
221				
222		LIOL O	a di adi a a	
223	Normal Distribution Test with Detected Values Only	UCL S	Lognormal Distribution Test with Detected Values Only	
224	Shapiro Wilk Test Statistic			0.943
225	•		·	
226	5% Shapiro Wilk Critical Value	0.905	5% Shapiro Wilk Critical Value	0.905
227	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
228	A			
229	Assuming Normal Distribution	T	Assuming Lognormal Distribution	
230	DL/2 Substitution Method		DL/2 Substitution Method	
231	Mean	1.592		-1.675
232	SD	3.15		2.334
233	95% DL/2 (t) UCL	2.778	95% H-Stat (DL/2) UCL	34.52
234				
235	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
236	Mean	1.262	Mean in Log Scale	-1.686
237	SD		SD in Log Scale	2.353
238	95% MLE (t) UCL	2.546		1.592
239	95% MLE (Tiku) UCL	2.483	SD in Original Scale	3.15
240			95% Percentile Bootstrap UCL	2.778
241			95% BCA Bootstrap UCL	2.974
242				
243	Gamma Distribution Test with Detected Values Only	*	Data Distribution Test with Detected Values Only	
244	k star (bias corrected)	0.319		
245	Theta Star	5.243		
246	nu star	12.75		
247				
248	A-D Test Statistic		Nonparametric Statistics	
249	5% A-D Critical Value	0.837	Kaplan-Meier (KM) Method	
250	K-S Test Statistic		Mean	1.592
251	5% K-S Critical Value			3.074
252	Data not Gamma Distributed at 5% Significance Lev	el	SE of Mean	0.688
253			95% KM (t) UCL	2.779
254	Assuming Gamma Distribution		95% KM (z) UCL	2.724
255	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	2.778
256	Minimum	0	` ' '	3.638
257	Maximum	9.91	95% KM (BCA) UCL	2.756
258	Mean	1.592	· · · · · · · · · · · · · · · · · · ·	2.769
259	Median	0.0783	95% KM (Chebyshev) UCL	4.592
260	SD	3.15	, , ,	5.89
261	k star	0.243	99% KM (Chebyshev) UCL	8.44
262	Theta star	6.54		
263	Nu star	10.22	Potential UCLs to Use	
264	AppChi2	4.081	99% KM (Chebyshev) UCL	8.44
265	95% Gamma Approximate UCL	3.987		
_00		1		

266	Α	В	C 95	D 5% Adjusted	E Gamma UCL	F 4.297	G	Н	I	J	K	L
266	Note: DL/2 is	s not a reco	mmended m									
267												
268	o-Xylene											
209												
270						General	Statistics					
271				Number of V	alid Samples	21				Number of	Detected Data	18
272				umber of Unio	- 1	18			Nu	umber of No	n-Detect Data	3
273										Percer	nt Non-Detects	14.29%
274												
275			Raw S	Statistics					Log-transfor	med Statist	ics	
276					um Detected	0.00112					mum Detected	-6.794
277					um Detected	29.6					mum Detected	3.388
278					n of Detected	2.052					an of Detected	-1.873
279					of Detected	6.903					D of Detected	2.318
280					n Non-Detect	0.00533					m Non-Detect	-5.234
281					n Non-Detect	0.697					m Non-Detect	-0.361
282				Waxiiiiuii	i Non-Detect	0.037				Waxiiiiu	iiii Non-Detect	-0.501
283	Noto: Data k	ava multiple	DI a Llaa	of KM Mothor	d is recommen	dod			Num	har traatad	as Non-Detect	16
284		· .		nd ROS Meth		ueu					ed as Detected	5
285			ND are treat		ious),							76.19%
286	Observation	s < Largest	ND are treat	eu as NDS					Sirigle L	L Non-Dete	ct Percentage	70.19%
287						LICI C	-disting					
288		James J. Distr	ibutian Tast	with Detector	d Malues Only	UCL St		an armal Dia	adibudian Tad	at with Date	ated Melves On	h.,
289	Г	Normai Distr			d Values Only	0.010	L	ognormai Dis			ted Values On	
290					Test Statistic	0.316					k Test Statistic	0.944
291				Shapiro Wilk		0.897		5			Critical Value	0.897
292		Data no	t Normal at	5% Significan	ice Levei			Data appea	ır Lognormaı	at 5% Sign	ificance Level	
293								A		Distril	L 4 ⁹	
294		Α	ssuming Noi	rmal Distribut	<u> </u>			ASS	suming Logn			
295				DL/2 Substit	ution Method	4 770				DL/2 Subst	itution Method	0.045
296					Mean	1.776					Mean	-2.215
297					SD	6.402				0.50/ 11.0	SD	2.465
298				95%	DL/2 (t) UCL	4.185				95% H-Si	tat (DL/2) UCL	40.76
299					=>							
300				od Estimate(N	′	N/A				•	ROS Method	
301		N	/ILE yields a	negative mea	an						n in Log Scale	-2.346
302											D in Log Scale	2.505
303											Original Scale	1.761
304											Original Scale	6.406
305									95%		Bootstrap UCL	4.578
306										95% BCA E	Bootstrap UCL	5.984
307												
308	0	amma Dist	ribution Test		d Values Only						d Values Only	
309				k star (bia	as corrected)	0.262		Data appea	r Lognormal	at 5% Sign	ificance Level	
310					Theta Star	7.818						
311					nu star	9.449						
312												
313				A-D	Test Statistic	1.824			Nonparame	etric Statistic	S	
314				5% A-D (Critical Value	0.854			K	Caplan-Meie	r (KM) Method	
315				K-S	Test Statistic	0.854					Mean	1.764
316				5% K-S	Critical Value	0.222					SD	6.251
317	Da	ata not Gam	ma Distribut	ed at 5% Sig	nificance Leve	l	1				SE of Mean	1.404
318							1			95	5% KM (t) UCL	4.185
J 10												

	А В	C Assuming Gam	D ma Distributi	E on	F	G	Н	I	J	K 5% KM (z) UCL	L 4.073
319	Gamm	a ROS Statistics								jackknife) UCL	4.174
320	Gammi		uonig Extrap	Minimum	0			9		ootstrap t) UCL	24.61
321				Maximum	29.6				,	KM (BCA) UCL	4.688
322				Mean	1.759			95% KM (F		Bootstrap) UCL	4.487
323				Median	0.0685			•		nebyshev) UCL	7.882
324				SD	6.407				•	nebyshev) UCL	10.53
325				k star	0.16				•	nebyshev) UCL	15.73
326				Theta star	10.98				(2)		
327				Nu star	6.727			Potential U	ICLs to Us	e	
328 329				AppChi2	2.022			99	9% KM (Ch	nebyshev) UCL	15.73
330		95% G	amma Appro		5.852				•	• ,	
331			% Adjusted C		6.465						
332	Note: DL/2 is not a re	commended me	thod.								
333											
334											
335											
	Diesel Range Organi	cs						_1	1		
337											
338					General	Statistics					
339		N	Number of Va	lid Samples	10				Number of	Detected Data	5
340		Nu	mber of Uniq	ue Samples	5			Nu	mber of No	on-Detect Data	5
341		N	umber of Mis	sing Values	11				Perce	nt Non-Detects	50.00%
342											
343		Raw St	atistics					Log-transform	ned Statist	tics	
344			Minimu	ım Detected	68.5					imum Detected	4.227
345				ım Detected	2750					imum Detected	7.919
346				of Detected	940.7					an of Detected	6.03
347				of Detected	1108					SD of Detected	1.612
348				Non-Detect	38.7					um Non-Detect	3.656
349			Maximum	Non-Detect	47.7				Maxim	um Non-Detect	3.865
350											
351	Note: Data have mult	•			nded					as Non-Detect	5
352	For all methods (exce	-		ods),						ed as Detected	50,000/
353	Observations < Large	est ND are treate	d as NDs					Single D	L Non-Dete	ect Percentage	50.00%
354					UCL St						
355	Normal D	istribution Test w	ith Datastad	Values Only			Lognormal Die	stribution Too	t with Data	cted Values On	hv
356	Normal Di		hapiro Wilk 1	•	0.85		Lognomiai Dis			lk Test Statistic	0.908
357			napiro Wilk C		0.85				•	k Critical Value	0.908
358	Data a	ppear Normal at	•		0.702		Data annes			nificance Level	0.702
359	Data a	-pour ronnarat	Oigiiillea	20101			_aaa appec	Logiloinidi	J /J OIGI		
360		Assuming Norr	nal Distribution	on			Ass	suming Logno	rmal Distr	ibution	
361			DL/2 Substitu				, 101			titution Method	
362				Mean	481.4					Mean	4.559
363				SD	883.2					SD	1.888
364			95% [DL/2 (t) UCL	993.3				95% H-S	Stat (DL/2) UCL	1539
365 366				.,						. ,	
367	Max	ximum Likelihoo	d Estimate(M	ILE) Method	N/A				Lo	g ROS Method	
368		MLE yields a r	•							an in Log Scale	3.655
369		-	-							D in Log Scale	2.724
370										Original Scale	472.2
371										Original Scale	888.5
J/ I											

	Α	В		С		D	Е	F		G	Н			1			J		K	L	
372														95%					ap UCL		60.4
373															95	5% B	CA B	ootstra	ap UCL	1	138
374																					
375	(Gamma Dis	stributio	on Test							Data Dis										
376					k	star (bia	as correcte	1	0.427		Data a	ippea	ar No	rmal a	at 5°	% Si	gnific	ance l	Level		
377							Theta S		2202												
378							nu s	tar	4.273												
379																					
380						A-D	Test Statis		0.296				Nonp	oaramo	etric	c Sta	tistics	5			
381					5	% A-D (Critical Val	ue	0.699					k	Kapl	lan-N	/leier	(KM) I	Method		
382						K-S	Test Statis	stic	0.699										Mean	50	04.6
383					5	% K-S (Critical Val	ue	0.367										SD	82	25.4
384	Dat	a appear G	amma	Distrib	outed a	at 5% Si	gnificance	Level										SE o	of Mean	29	91.8
385					-												95%	% KM	(t) UCL	1	040
386		-	Assum	ing Gar	mma [Distribut	ion										95%	6 KM (z) UCL	98	84.6
387		Gamma	ROS S	Statistic	s usir	ng Extra	polated Da	ata							95	5% K	(М (ја	ckknif	e) UCL	1	002
388							Minimu	um	0					,	95%	6 KN	1 (boo	tstrap	t) UCL	1	671
389							Maximu	um	2750							95	5% KN	И (ВС	A) UCL	1	486
390							Me	an	470.4				95%	KM ((Per	cent	ile Bo	otstra	p) UCL	1	159
391							Medi	an	34.25					9	95%	KM	(Che	byshe	v) UCL	1	777
392								SD	889.6					97.	'.5%	KM	(Che	byshe	v) UCL	2	327
393							ks	tar	0.111								-	-	v) UCL	3	408
							Theta s	tar	4237								`		,		
394							Nu s		2.22				Pot	ential (UCI	Ls to	Use				
395							AppCl	hi2	0.185									% KM	(t) UCL	1	040
396				95%	Gamn	na Appro	oximate U		5654				95%	KM ((Per	cent			p) UCL		159
397							Gamma U		7843					•					1-7		
398	Note: DL/2 i	is not a rec	omme																		
399																					
400																					
401	Gasoline Ra	ange Organ	nics																		
402																					
403								Ge	neral S	Statistics											
404					Numl	per of Va	alid Sampl		10						Nu	ımbe	r of D	etecte	ed Data		6
405				N			ue Sampl		6					N					ct Data		4
406							ssing Valu		11										Detects	40.0	20%
407							Jonig Valu												3010010		70
408				Raw S	Statist	ice							og-tr	ansfo	rme	d St	atietic	' e			
409							um Detect	ed	1.92				_og	u					etected	0	.652
410	-						um Detect		1.92										etected		.836
411	-						of Detect		32.67							ı۱			etected		.435
412																				2.	
413							of Detect		49.31							R A:			etected		1.6
414							Non-Dete		1.15										-Detect		0.14
415					N	ıaxımum	Non-Dete	ect	2.22							Ma	xımun	n Non	-Detect	0.	.798
416																		.,			
417	Note: Data I							mended											-Detect		5
418	For all meth						ods),												etected		5
419	Observation	ns < Larges	st ND a	re treat	ted as	NDs							Si	ingle [)L N	Non-	Detec	t Perc	entage	50.0	00%
420																					
421									ICL St	atistics											
422		Normal Dis	tributio							l	Lognormal	Dist	tributi								
423					Shapi	ro Wilk	Test Statis	stic	0.711						Sha	apiro	Wilk	Test S	Statistic	0.	.904
720																					
424				5% 9	Shapir	o Wilk C	Critical Val	ue	0.788					5% \$	Sha	piro	Wilk	Critica	l Value	0.	.788

	A B C D E Data not Normal at 5% Significance Level	F	G H I J K Data appear Lognormal at 5% Significance Level	L
425	Data not Normal at 3 % Significance Level		Data appear Logitornial at 5 % Significance Level	
426	Assuming Normal Distribution		Assuming Lognormal Distribution	
427	DL/2 Substitution Method		DL/2 Substitution Method	
428	Mean	19.94	Mean	1.386
429	SD	40.26	SD	1.812
430	95% DL/2 (t) UCL	43.28	95% H-Stat (DL/2) UCL	121.9
431	30% DD2 (t) 332	40.20	50% TI Glat (BEZ) 66E	121.0
432	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
433	MLE yields a negative mean		Mean in Log Scale	0.839
434	<u>-</u> ,		SD in Log Scale	2.387
435			Mean in Original Scale	19.69
436			SD in Original Scale	40.4
437			95% Percentile Bootstrap UCL	40.58
438			95% BCA Bootstrap UCL	52.36
439			11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
440	Gamma Distribution Test with Detected Values Only	/	Data Distribution Test with Detected Values Only	
441 442	k star (bias corrected)	0.406	Data Follow Appr. Gamma Distribution at 5% Significance Le	evel
443	Theta Star	80.53		
444	nu star	4.869		
445				
446	A-D Test Statistic	0.566	Nonparametric Statistics	
447	5% A-D Critical Value	0.731	Kaplan-Meier (KM) Method	
448	K-S Test Statistic	0.731	Mean	20.37
449	5% K-S Critical Value	0.347	SD	37.99
450	Data follow Appr. Gamma Distribution at 5% Significance	Level	SE of Mean	13.16
451			95% KM (t) UCL	44.49
452	Assuming Gamma Distribution		95% KM (z) UCL	42.02
453	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	42.99
454	Minimum	1.92	95% KM (bootstrap t) UCL	342.9
455	Maximum	126	95% KM (BCA) UCL	45.19
456	Mean	23.16	95% KM (Percentile Bootstrap) UCL	43.48
457	Median	7.217	95% KM (Chebyshev) UCL	77.73
458	SD	38.8	97.5% KM (Chebyshev) UCL	102.5
459	k star	0.577	99% KM (Chebyshev) UCL	151.3
460	Theta star	40.17		
461	Nu star	11.53	Potential UCLs to Use	
462	AppChi2	4.919	95% KM (BCA) UCL	45.19
463	95% Gamma Approximate UCL	54.29		
464	95% Adjusted Gamma UCL	63.67		
465	Note: DL/2 is not a recommended method.			
466				
467	Naphthalene			
468				
469		General		
470	Number of Valid Samples		Number of Detected Data	7
471	Number of Unique Samples	7	Number of Non-Detect Data	4
472			Percent Non-Detects	36.36%
473				
474	Raw Statistics	. = -	Log-transformed Statistics	
475	Minimum Detected		Minimum Detected	0.536
476	Maximum Detected	11.3	Maximum Detected	2.425
477	Mean of Detected	5.829	Mean of Detected	1.583

	A B C D E SD of Detected	F 3.589	G H I J K SD of Detected	L 0.672
478	Minimum Non-Detect	0.67	Minimum Non-Detect	-0.4
479	Maximum Non-Detect	0.07	Maximum Non-Detect	-0.105
480	Maximum Non Beleet	0.0	Waxiiiaii 11011 Beleet	0.100
481	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	4
482	For all methods (except KM, DL/2, and ROS Methods),	naca	Number treated as Detected	7
483	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	36.36%
484			ogo	
485		UCL St	atistics	
486 487	Normal Distribution Test with Detected Values Only	,	Lognormal Distribution Test with Detected Values Only	
488	Shapiro Wilk Test Statistic	0.916	Shapiro Wilk Test Statistic	0.961
489	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
490	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
491				
492	Assuming Normal Distribution		Assuming Lognormal Distribution	
493	DL/2 Substitution Method		DL/2 Substitution Method	
494	Mean	3.848	Mean	0.654
495	SD	3.91	SD	1.392
496	95% DL/2 (t) UCL	5.984	95% H-Stat (DL/2) UCL	15.58
497				
498	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
499	Mean	2.777	Mean in Log Scale	0.954
500	SD	5.107	SD in Log Scale	1.016
501	95% MLE (t) UCL	5.568	Mean in Original Scale	4.023
502	95% MLE (Tiku) UCL	5.857	SD in Original Scale	3.742
503			95% Percentile Bootstrap UCL	5.758
504			95% BCA Bootstrap UCL	6.04
505				
506	Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
507	k star (bias corrected)		Data appear Normal at 5% Significance Level	
508	Theta Star	3.289		
509	nu star	24.81		
510	ADTION	0.000	N	
511	A-D Test Statistic		Nonparametric Statistics Kaplan-Meier (KM) Method	
512	5% A-D Critical Value K-S Test Statistic	0.712 0.712	Kapian-ivieter (Kivi) Method Mean	4.331
513	5% K-S Critical Value	0.712	SD	3.31
514	Data appear Gamma Distributed at 5% Significance Le		SE of Mean	1.078
515	Data appear Gamina Distributed at 5 % Significance Le	3VCI	95% KM (t) UCL	6.284
516	Assuming Gamma Distribution		95% KM (z) UCL	6.104
517	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	6.125
518	Minimum	1.71	95% KM (bootstrap t) UCL	7.168
519	Maximum	11.3	95% KM (BCA) UCL	7.100
520	Mean	4.874	95% KM (Percentile Bootstrap) UCL	6.36
521	Median	3.204	95% KM (Chebyshev) UCL	9.029
522	SD	3.08	97.5% KM (Chebyshev) UCL	11.06
523	k star	2.548	99% KM (Chebyshev) UCL	15.06
524	Theta star	1.913	55.5(51.65)51.61, 502	
525	Nu star	56.05	Potential UCLs to Use	
526	AppChi2	39.84	95% KM (t) UCL	6.284
527 528	95% Gamma Approximate UCL	6.857	95% KM (Percentile Bootstrap) UCL	6.36
528	95% Adjusted Gamma UCL	7.261	, , , , , , ,	
	Note: DL/2 is not a recommended method.			
JJU	<u> </u>			

	A B C D E	F	G	L
531				
532	o-Xylene			
555	o-Aylerie			
534		General	Statistics	
535	Number of Valid Samples	11	Number of Detected Data	7
536	Number of Unique Samples	6	Number of Non-Detect Data	4
537			Percent Non-Detects	36.36%
538				
539 540	Raw Statistics		Log-transformed Statistics	
541	Minimum Detected	0.434	Minimum Detected	-0.835
542	Maximum Detected	34.1	Maximum Detected	3.529
543	Mean of Detected	6.743	Mean of Detected	0.945
544	SD of Detected	12.15	SD of Detected	1.386
545	Minimum Non-Detect	0.67	Minimum Non-Detect	-0.4
546	Maximum Non-Detect	0.9	Maximum Non-Detect	-0.105
547				
548	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	5
549	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	6
550	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	45.45%
551			1	
552		UCL St	atistics	
553	Normal Distribution Test with Detected Values Only	,	Lognormal Distribution Test with Detected Values Only	′
554	Shapiro Wilk Test Statistic	0.563	Shapiro Wilk Test Statistic	0.941
555	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
556	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
557				
JU/				
558	Assuming Normal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
558	DL/2 Substitution Method Mean	4.43	DL/2 Substitution Method Mean	0.248
558 559	DL/2 Substitution Method Mean SD	9.942	DL/2 Substitution Method Mean SD	1.446
558 559 560 561 562	DL/2 Substitution Method Mean	-	DL/2 Substitution Method Mean	
558 559 560 561 562 563	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	1.446
558 559 560 561 562 563 564	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	1.446
558 559 560 561 562 563 564 565	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	1.446 18.41 0.122
558 559 560 561 562 563 564 565 566	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	1.446 18.41 0.122 1.567
558 559 560 561 562 563 564 565 566 567	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	1.446 18.41 0.122 1.567 4.389
558 559 560 561 562 563 564 565 566 567 568	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961
558 559 560 561 562 563 564 565 566 567 568 569	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	1.446 18.41 0.122 1.567 4.389 9.961 10.12
558 559 560 561 562 563 564 565 566 567 568 569 570	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942 9.863	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961
558 559 560 561 562 563 564 565 566 567 568 569 570	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	9.942 9.863 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	1.446 18.41 0.122 1.567 4.389 9.961 10.12
558 559 560 561 562 563 564 565 566 567 568 569 570 571	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean	9.942 9.863 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only	9.942 9.863 N/A	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected)	9.942 9.863 N/A 0.459	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star	9.942 9.863 N/A 0.459	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 575 576	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star	9.942 9.863 N/A 0.459	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 576	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star	9.942 9.863 N/A 0.459 14.71 6.42	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 575 576 577	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star	9.942 9.863 N/A 0.459 14.71 6.42	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 578 571 572 573 574 575 576 577 578 579	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value	9.942 9.863 N/A 0.459 14.71 6.42 0.688 0.743	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 578	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	9.942 9.863 N/A 0.459 14.71 6.42 0.688 0.743 0.743	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 575 576 577 578 579 580 581	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	9.942 9.863 N/A 0.459 14.71 6.42 0.688 0.743 0.743	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04
558 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 575 576 577 578 578	DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	9.942 9.863 N/A 0.459 14.71 6.42 0.688 0.743 0.743	DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	1.446 18.41 0.122 1.567 4.389 9.961 10.12 13.04 el

	A B C D E	F	G H I J K	L
584	Gamma ROS Statistics using Extrapolated Data	0.404	95% KM (jackknife) UCL	9.753
585	Minimum	0.434	95% KM (bootstrap t) UCL	39.39
586	Maximum	34.1	95% KM (BCA) UCL	10.58
587	Mean	4.623	95% KM (Percentile Bootstrap) UCL	10.28
588	Median	0.919	95% KM (Chebyshev) UCL	17.89
589	SD	9.859	97.5% KM (Chebyshev) UCL	23.71
590	k star	0.523	99% KM (Chebyshev) UCL	35.14
591	Theta star	8.834		
592	Nu star	11.51	Potential UCLs to Use	
593	AppChi2	4.909	95% KM (BCA) UCL	10.58
594	95% Gamma Approximate UCL	10.84		
595	95% Adjusted Gamma UCL	12.59		
596	Note: DL/2 is not a recommended method.			
597				
598				
599	C5-C8 Aliphatics			
600				
601		General		
602	Number of Valid Samples	11	Number of Detected Data	4
603	Number of Unique Samples	4	Number of Non-Detect Data	7
604			Percent Non-Detects	63.64%
605				
606	Raw Statistics		Log-transformed Statistics	
607	Minimum Detected	13	Minimum Detected	2.565
608	Maximum Detected	85.7	Maximum Detected	4.451
609	Mean of Detected	33.18	Mean of Detected	3.17
610	SD of Detected	35.07	SD of Detected	0.864
611	Minimum Non-Detect	12	Minimum Non-Detect	2.485
612	Maximum Non-Detect	18	Maximum Non-Detect	2.89
613				
614	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	10
615	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	1
616	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	90.91%
617				
618		UCL St		
619	Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
620	Shapiro Wilk Test Statistic	0.684	Shapiro Wilk Test Statistic	0.768
621	5% Shapiro Wilk Critical Value	0.748	5% Shapiro Wilk Critical Value	0.748
622	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
623				
624	Assuming Normal Distribution		Assuming Lognormal Distribution	
625	DL/2 Substitution Method		DL/2 Substitution Method	
626	Mean	16.61	Mean	2.399
627	SD	23.28	SD	0.781
628	95% DL/2 (t) UCL	29.33	95% H-Stat (DL/2) UCL	27.73
629				
630	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
631	MLE method failed to converge properly		Mean in Log Scale	1.936
632			SD in Log Scale	1.139
633			Mean in Original Scale	14.42
634			SD in Original Scale	24.32
635			95% Percentile Bootstrap UCL	27.89
636			95% BCA Bootstrap UCL	35.24
000				

	A B C D E	F	G H I J K	L
637				
638	Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
639	k star (bias corrected)	0.58	Data appear Lognormal at 5% Significance Level	
640	Theta Star	57.18		
641	nu star	4.641		
642	1.5.7.10.44	0.700		
643	A-D Test Statistic	0.723	Nonparametric Statistics	
644	5% A-D Critical Value	0.662	Kaplan-Meier (KM) Method	
645	K-S Test Statistic	0.662	Mean	20.42
646	5% K-S Critical Value	0.399	SD	20.71
647	Data not Gamma Distributed at 5% Significance Leve)	SE of Mean	7.212
648			95% KM (t) UCL	33.49
649	Assuming Gamma Distribution		95% KM (z) UCL	32.28
650	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	31.24
651	Minimum	5.954	95% KM (bootstrap t) UCL	129.2
652	Maximum	85.7	95% KM (BCA) UCL	85.7
653	Mean	29.16	95% KM (Percentile Bootstrap) UCL	35.3
654	Median	17.8	95% KM (Chebyshev) UCL	51.85
655	SD	23.41	97.5% KM (Chebyshev) UCL	65.46
656	k star	1.554	99% KM (Chebyshev) UCL	92.18
657	Theta star	18.76		
658	Nu star	34.2	Potential UCLs to Use	
659	AppChi2	21.82	95% KM (t) UCL	33.49
	000/ 0 1101	45.69	95% KM (% Bootstrap) UCL	35.3
660	95% Gamma Approximate UCL		33 % NW (% Bootstap) OCL	
	95% Adjusted Gamma UCL	N/A	33 % NW (% Bootstrap) OCL	
660661662			33 % NW (% Bootstrap) OCL	
661 662	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.		33 % NW (% Bootstrap) OCL	
661 662 663	95% Adjusted Gamma UCL		33 % NW (% Bootstrap) OCL	
661 662 663 664 665	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.	N/A		
661 662 663 664 665	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.)	N/A General S	Statistics	0
661 662 663 664 665 666	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples	N/A General 3	Statistics Number of Detected Data	8
661 662 663 664 665 666	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.)	N/A General S	Statistics Number of Detected Data Number of Non-Detect Data	3
661 662 663 664 665 666 667 668	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples	N/A General 3	Statistics Number of Detected Data	8 3 27.27%
661 662 663 664 665 666 667 668	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples	N/A General 3	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects	3
661 662 663 664 665 666 667 668 669	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics	General \$	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics	3 27.27%
661 662 663 664 665 666 667 668 669 670	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected	General 9 11 8 8 86.4	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected	3 27.27% 4.459
661 662 663 664 665 666 667 668 670 671	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected	General \$ 11 8 86.4 1710	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected	3 27.27% 4.459 7.444
661 662 663 664 665 666 667 668 670 671 672 673	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected Mean of Detected	Reneral \$ 11 8 86.4 1710 480.7	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected	3 27.27% 4.459 7.444 5.722
661 662 663 664 665 666 667 668 670 671 672 673	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected	Reneral \$ 11 8 86.4 1710 480.7 538.8	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected	3 27.27% 4.459 7.444 5.722 0.994
661 662 663 664 665 666 667 668 670 671 672 673 674	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected SD of Detected Minimum Non-Detect	86.4 1710 480.7 538.8	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	3 27.27% 4.459 7.444 5.722 0.994 2.565
661 662 663 664 665 666 667 668 670 671 672 673 674 675	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected	Reneral \$ 11 8 86.4 1710 480.7 538.8	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected	3 27.27% 4.459 7.444 5.722 0.994
661 662 663 664 665 666 667 668 670 671 672 673 674 675 676	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect	86.4 1710 480.7 538.8 13	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect	3 27.27% 4.459 7.444 5.722 0.994 2.565
661 662 663 664 665 666 667 668 670 671 672 673 674 675 676 677	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recommen	86.4 1710 480.7 538.8 13	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89
661 662 663 664 665 666 667 670 671 672 673 674 675 676 677 678	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Maximum Detected Maximum Detected Mean of Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recommen	86.4 1710 480.7 538.8 13	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89
661 662 663 664 665 666 667 668 670 671 672 673 674 675 676 677 678	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recommen	86.4 1710 480.7 538.8 13	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89
661 662 663 664 665 666 667 668 670 671 672 673 674 675 676 678 679 680	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Maximum Detected Maximum Detected Mean of Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recommen	86.4 1710 480.7 538.8 13	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89
661 662 663 664 665 666 667 668 670 671 672 673 674 675 676 677 678 679 680 681 682	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recommented for all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs	86.4 1710 480.7 538.8 13	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89
661 662 663 664 665 666 667 668 670 672 673 674 675 676 677 678 679 680 681 682 683	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recommented for all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Normal Distribution Test with Detected Values Only	86.4 1710 480.7 538.8 13 18	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage atistics Lognormal Distribution Test with Detected Values Only	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89 3 8 27.27%
661 662 663 664 665 666 667 670 671 672 673 674 675 676 677 678 679 680 681 682 683	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Maximum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recommen For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic	86.4 1710 480.7 538.8 13 18	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage atistics Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89 3 8 27.27%
661 662 663 664 665 666 667 670 671 672 673 674 675 676 677 680 681 682 683 684 685	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Maximum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recommented in the properties of the properties	86.4 1710 480.7 538.8 13 18	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Single DL Non-Detect Percentage atistics Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89 3 8 27.27%
661	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Maximum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recommen For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic	86.4 1710 480.7 538.8 13 18	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage atistics Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89 3 8 27.27%
661 662 663 664 665 666 667 670 671 672 673 674 675 676 678 680 681 682 683 684 685 685	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. C9-C10 Aromatics (unadj.) Number of Valid Samples Number of Unique Samples Number of Unique Samples Maximum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recommented in the properties of the properties	86.4 1710 480.7 538.8 13 18	Statistics Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected SD of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Single DL Non-Detect Percentage atistics Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	3 27.27% 4.459 7.444 5.722 0.994 2.565 2.89 3 8 27.27%

	A B C D E DL/2 Substitution Method	F	G	Н	I J K DL/2 Substitution Method	L
690	Mean	351.6			Mean	4.708
691	SD	502.1			SD	1.927
692	95% DL/2 (t) UCL	626			95% H-Stat (DL/2) UCL	6123
693	30% DB2 (t) GGE	020			30% 11 314 (32/2) 332	0120
694	Maximum Likelihood Estimate(MLE) Method				Log ROS Method	
695	Mean	243.2			Mean in Log Scale	5.043
696	SD	603.2			SD in Log Scale	1.43
697	95% MLE (t) UCL	572.9			Mean in Original Scale	356.5
698 699	95% MLE (Tiku) UCL	583.7			SD in Original Scale	498.5
700	· , ,				95% Percentile Bootstrap UCL	601.5
701					95% BCA Bootstrap UCL	692
701					<u> </u>	
703	Gamma Distribution Test with Detected Values Only	1		Data Distrib	ution Test with Detected Values Only	
704	k star (bias corrected)	0.861	Da	ta appear Ga	mma Distributed at 5% Significance Leve	el
705	Theta Star	558.4				
706	nu star	13.77				
707						
708	A-D Test Statistic	0.337			Nonparametric Statistics	
709	5% A-D Critical Value	0.732			Kaplan-Meier (KM) Method	
710	K-S Test Statistic	0.732			Mean	373.1
711	5% K-S Critical Value	0.3			SD	464.3
712	Data appear Gamma Distributed at 5% Significance Le	vel			SE of Mean	149.7
713					95% KM (t) UCL	644.4
714	Assuming Gamma Distribution				95% KM (z) UCL	619.3
715	Gamma ROS Statistics using Extrapolated Data				95% KM (jackknife) UCL	633.8
716	Minimum	0.856			95% KM (bootstrap t) UCL	987.2
717	Maximum	1710			95% KM (BCA) UCL	648.5
718	Mean	349.8			95% KM (Percentile Bootstrap) UCL	651.7
719	Median	156			95% KM (Chebyshev) UCL	1025
720	SD	503.4			97.5% KM (Chebyshev) UCL	1308
721	k star	0.338			99% KM (Chebyshev) UCL	1862
722	Theta star	1035			Determination of the	
723	Nu star	7.437			Potential UCLs to Use	1005
724	AppChi2 95% Gamma Approximate UCL	2.414 1078			95% KM (Chebyshev) UCL	1025
725	95% Garillia Approximate UCL 95% Adjusted Gamma UCL	1318				
726	Note: DL/2 is not a recommended method.	1316				
121	Note. DD2 is not a recommended method.					
728						
729	C9-C12 Aliphatics					
730						
731		General S	Statistics			
732	Number of Valid Samples	11			Number of Detected Data	8
733	Number of Unique Samples	8			Number of Non-Detect Data	3
734					Percent Non-Detects	27.27%
735 736						
736	Raw Statistics				_og-transformed Statistics	
737	Minimum Detected	52.1			Minimum Detected	3.953
739	Maximum Detected	1980			Maximum Detected	7.591
740	Mean of Detected	433.2			Mean of Detected	5.45
741	SD of Detected	637.1			SD of Detected	1.113
741	Minimum Non-Detect	13	1		Minimum Non-Detect	2.565
142						

	Α	В	С	D	Е	F	G	Н	I	J	K	L
743				Maximum	Non-Detect	18				Maximum	Non-Detect	2.89
744												
745		•		of KM Method		nded				per treated as		3
746				nd ROS Metho	ods),					mber treated		8
747	Observation	s < Largest	ND are treate	ed as NDs					Single D	L Non-Detect	Percentage	27.27%
748												
749						UCL St						
750	1	Normal Dist		with Detected	•		Lo	ognormal Dis		t with Detecte		* I
751				Shapiro Wilk 1						Shapiro Wilk T		0.947
752				Shapiro Wilk C		0.818				Shapiro Wilk C		0.818
753		Data no	ot Normal at 5	5% Significand	ce Level			Data appea	r Lognormal	at 5% Signific	ance Level	
754												
755		A	_	mal Distribution				Ass		ormal Distribu		
756				DL/2 Substitu						DL/2 Substitu	tion Method	
757					Mean	317.1					Mean	4.51
758					SD	569					SD	1.86
759				95% [DL/2 (t) UCL	628				95% H-Stat	(DL/2) UCL	3869
760												
761		Maxin	num Likelihoo	od Estimate(M	ILE) Method					Log F	OS Method	
762					Mean	188.6				Mean i	n Log Scale	4.709
763					SD	675.9				SDi	n Log Scale	1.573
764				95% I	MLE (t) UCL	557.9				Mean in Or	riginal Scale	319.3
765				95% MLE	(Tiku) UCL	567				SD in Or	riginal Scale	567.7
766									95%	Percentile Bo	otstrap UCL	638.8
767										95% BCA Bo	otstrap UCL	824.2
768						1					<u> </u>	
769	C	Gamma Dist	tribution Test	with Detected	Values Only	/		Data Distrib	ution Test w	ith Detected \	/alues Only	
770				k star (bia	s corrected)	0.668	Dat	a appear Ga	mma Distribi	uted at 5% Sig	gnificance Lev	/el
771					Theta Star	648.3						
772					nu star	10.69						
773												
774				A-D 1	est Statistic	0.592			Nonparame	tric Statistics		
775				5% A-D C	ritical Value	0.738			K	aplan-Meier (I	KM) Method	
776				K-S T	est Statistic	0.738					Mean	329.3
777				5% K-S C	ritical Value	0.302					SD	535.9
778	Data	a appear Ga	amma Distribi	uted at 5% Sig	gnificance Le	evel					SE of Mean	172.7
779										95%	KM (t) UCL	642.3
780		Α	ssuming Gan	nma Distributi	on	1				95%	KM (z) UCL	613.4
781		Gamma F	ROS Statistics	s using Extrap	olated Data					95% KM (jac	kknife) UCL	629.3
782					Minimum	0			9	5% KM (boots	• 1	1505
783					Maximum	1980				95% KM	(BCA) UCL	679.5
784					Mean	315.1			95% KM (F	Percentile Boo	tstrap) UCL	655
785					Median	112			9	5% KM (Cheb	yshev) UCL	1082
786					SD	570.2			97.	5% KM (Cheb	yshev) UCL	1408
787					k star	0.139			99	9% KM (Cheb	yshev) UCL	2048
788					Theta star	2263						
789					Nu star	3.062			Potential U	JCLs to Use	L	
					AppChi2	0.391			95	5% KM (Cheb	yshev) UCL	1082
790			95% 0	Samma Appro	ximate UCL	2467						
790 791												
791				6% Adjusted G	amma UCL	3509						
791 792	Note: DL/2 i	s not a reco		•	amma UCL	3509						
791 792 793	Note: DL/2 is	s not a reco	95	•	amma UCL	3509						
791 792	Note: DL/2 i	s not a reco	95	•	Gamma UCL	3509						

	A B C D E C9-C12 Aliphatics (unadj.)	F	G	Н	I		J	K		L
796	C9-C12 Aliphatics (unadj.)									
797		General	Statistics							
798	Number of Valid Samples	11				Numb	per of De	etected Dat	ta	8
799 800	Number of Unique Samples	8				Number	r of Non-	Detect Dat	ta	3
801	· · ·					F	Percent I	Non-Detect	ts	27.27%
802										
803	Raw Statistics				Log-trans	sformed S	Statistics	3		
804	Minimum Detected	176					Minimu	ım Detecte	ed	5.17
805	Maximum Detected	3730					Maximu	ım Detecte	ed	8.224
806	Mean of Detected	922					Mean	of Detecte	ed	6.314
807	SD of Detected	1181					SD	of Detecte	ed	1.02
808	Minimum Non-Detect	13				N	/linimum	Non-Dete	ct	2.565
809	Maximum Non-Detect	18				M	laximum	Non-Dete	ct	2.89
810										
811	Note: Data have multiple DLs - Use of KM Method is recommer	nded						Non-Dete		3
812	For all methods (except KM, DL/2, and ROS Methods),							as Detecte		8
813	Observations < Largest ND are treated as NDs				Single	le DL Nor	n-Detect	Percentag	je	27.27%
814		1101.0								
815	Normal Distribution Took with Data and Walves Only	UCL S		Die		T 4 dala	Data	d Maluan C	 .	
816	Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic	0.664	L	ognormal Dis	stribution			ed values C		0.934
817	5% Shapiro Wilk Critical Value	0.818			50			ritical Valu		0.934
818	Data not Normal at 5% Significance Level	0.616		Data appea						0.616
819	Data not Normal at 3 % Significance Level			Data appea	ar Logilon	iliai at 3 /	o Sigrilli	Salice Leve	71	
820	Assuming Normal Distribution			Ass	suming Lo	ognormal	Distribu	tion		
821	DL/2 Substitution Method			,,,,,				ition Metho	od	
822	Mean	672.6						Mea		5.139
823	SD	1077						S		2.188
824 825	95% DL/2 (t) UCL	1261				95%	6 H-Stat	(DL/2) UC	:L	29925
826										
827	Maximum Likelihood Estimate(MLE) Method						Log F	ROS Metho	od	
828	Mean	432.1					Mean	in Log Scal	le	5.625
829	SD	1290					SD	in Log Scal	le	1.456
830	95% MLE (t) UCL	1137						riginal Scal		682.6
831	95% MLE (Tiku) UCL	1157						riginal Scal		1070
832					95			otstrap UC		1255
833						95%	BCA Bo	otstrap UC	L	1600
834				B . =::::				,		
835	Gamma Distribution Test with Detected Values Only			Data Distrib					•	
836	k star (bias corrected)	0.779	Da	ta appear Ga	amma Dis	stributed a	at 5% Si	gnificance	Level	
837	Theta Star	1183								
838	nu star	12.47								
839	A-D Test Statistic	0.487			Nonnara	ametric S	tatietics			
840	5% A-D Critical Value	0.487			inonpara			KM) Metho	nd	
841	K-S Test Statistic	0.734				Napiaii	1110101	Mea		718.5
842	5% K-S Critical Value	0.734						S		999.1
843	Data appear Gamma Distributed at 5% Significance Le							SE of Mea		322
844								KM (t) UC		1302
845	Assuming Gamma Distribution							KM (z) UC		1248
846	Gamma ROS Statistics using Extrapolated Data					95%		kknife) UC		1287
847	Minimum	0						strap t) UC		2448
848							,	, ,		

940	Α	В	С		D	E Maximur	F n 373	0	G		Н		I		J 95% KI	.M (E	K BCA) l	JCL	L 1317
849 850						Mea						95%	6 KM (entile Bo		-		1311
851						Media	n 25	6					9	95% K	M (Che	ebys	hev) l	JCL	2122
						SI	D 107	8					97.	.5% K	M (Che	ebys	hev) l	JCL	2730
852 853						k sta	nr 0.13	8					9	99% K	M (Che	ebys	hev) l	JCL	3923
854						Theta sta	ar 485	8											
855						Nu sta	ar 3.03	7				Pot	tential l	UCLs	to Use)			
856						AppChi	2 0.38	3					9	5% K	M (Che	ebys	hev) l	JCL	2122
857			95%	% Gam	ıma Appr	oximate UC	L 531	1											
858				95% A	Adjusted (Gamma UC	L 756	0											
859	Note: DL/2 is	not a reco	mmended	metho	od.														
860																			
861																			
862	2-Methylnapl	hthalene																	
863																			
864							Genera	ıl St	tatistics										
865				Nur	nber of V	alid Sample	s 1	1						Num	ber of D	Dete	cted D	Data	6
866				Numb	er of Unio	que Sample	S	6					N	umbe	r of Nor	n-De	etect D	Data	5
867															Percent	t No	n-Det	ects	45.45%
868							"												
869			Rav	w Stati:	stics							Log-t	ransfor	rmed	Statistic	cs			
870					Minim	um Detecte	d 1.9	6							Minim	num	Dete	cted	0.673
871					Maxim	um Detecte	d 7.4	6							Maxim	num	Dete	cted	2.01
872					Mear	n of Detecte	d 4.68	3							Mea	ın of	Dete	cted	1.417
873					SE	of Detecte	d 2.30	6							SI	D of	Detec	cted	0.584
874					Minimun	n Non-Detec	et 0.5	6						ı	Minimur	m N	on-De	tect	-0.58
875					Maximun	n Non-Dete	ot 0.6	8						٨	/laximur	m N	on-De	tect	-0.386
876																			
877	Note: Data h						ended						Num	ber tr	eated a	as N	on-De	tect	5
878	For all metho	ds (except	t KM, DL/2,	, and F	ROS Meth	nods),									r treated				6
879	Observations	s < Largest	ND are tre	eated a	as NDs							S	ingle D	DL No	n-Detec	ct Pe	ercent	age	45.45%
880																			
881							UCL	Stat											
882	N	lormal Dist	ribution Te			d Values On	•		L	.ogno	rmal Di	istribut			Detec			-	
883						Test Statisti									iro Wilk				0.848
884						Critical Valu	e 0.78	8							ro Wilk				0.788
885		Data app	ear Norma	al at 5%	6 Significa	ance Level				Dat	a appe	ar Log	normal	I at 59	% Signif	ficar	nce Le	evel	
886			·	1	Di-Adh.	•					A -				l Disasila				
887		<i>F</i>	Assuming N			ution Metho					As	ssumin	g Logn		l Distrib			الممطا	
888				DL/	2 Subsili	Mea		7						DL/Z	Substit	tutic		lean	0.244
889						SI											IVI	SD	1.41
890					050/	DL/2 (t) UC								OE0	6 H-Sta	ot /F) /2\ I		8.722
891					95%	DL/2 (i) UC	L 4.2	3						907	% П-St	at (L)L/2) (JCL	0.722
892		Movin	المرابع المرابع	bood C	atimata/N	MLE) Metho	4								Log	· DO	S Met	·b o d	
893		IVIAXII	num Likeiii	1000 E	:sumate(r			2											0.72
894						Mea SI											Log So Log So		0.72
895					QE9/	MLE (t) UC								N.A	ean in (_		2.959
896						E (Tiku) UC								IVI	SD in (_			2.959
897					50 /0 IVIL	L (TIKU) UC	4.10	1					QE0/	Porc	entile B	_			4.2
898								+					<i>33 /</i> 0		BCA B				4.393
899														<i>3</i> J 70	DOM B	,0018	suap (JOL	4.333
900	6	amma Dict	tribution To	act with	Detecto	d Values Or	nlv			Det	a Dietri	ihution	Test :	vith D	etected	1 \/^	luee O)nlv	
901		umma DISI		oc Will	י הפופנום	u values Ol	'' <i>y</i>			Dal	ווופוע ני	เอนแบท	ı c əl W	יונווי	JUGUIGU	· val	iu c a U	· III y	

902	A B C D k star (bia	E as corrected)	F 2.159	G	H Data appe	ı ar Normal at s	J 5% Significa	K ance Level	L
903		Theta Star	2.169						
904		nu star	25.91						
905									
906	A-D	Test Statistic	0.467			Nonparametr	ic Statistics		
907	5% A-D	Critical Value	0.7			Kap	olan-Meier (KM) Method	
	K-S	Test Statistic	0.7			<u> </u>		Mean	3.445
908	5% K-S	Critical Value	0.333					SD	2.063
909	Data appear Gamma Distributed at 5% S	ignificance Le						SE of Mean	0.681
911							95%	KM (t) UCL	4.68
912	Assuming Gamma Distribut	tion						KM (z) UCL	4.566
	Gamma ROS Statistics using Extra					g		ckknife) UCL	4.606
913		Minimum					•	tstrap t) UCL	4.705
914		Maximum					,	I (BCA) UCL	5.538
915		Mean	4.431			95% KM (Pe		` ,	5.472
916		Median	4.128			•		yshev) UCL	6.416
917		SD					-	yshev) UCL	7.701
918		k star	5.283				•	yshev) UCL	10.23
919		Theta star	0.839				o i an Coller	,, o, iov, ool	10.23
920		Nu star	116.2			Potential UC	'l e to l lee		
921		AppChi2				Poleillai OC		KM (t) UCL	4.68
922	95% Gamma Appr		5.577			95% KM (Pe		7.7	5.472
923	95% Adjusted		5.795			95 % KW (FE	rcentile bot	Jisirap) UCL	5.472
924	Note: DL/2 is not a recommended method.	Gaillilla UCL	5.795						
923	Note. DL/2 is not a recommended method.								
926									
927	C11-C22 Aromatics								
920	CTT-022 Albinatics								
929			General	Statistics					
930	Number of V	alid Samples		Otatiotics		Nun	abor of Unic	que Samples	10
931	Number of v	and Gamples	11			INUII	ibei oi oilic	que Gampies	
932	Raw Statistics				1	_og-transform	ad Statistics	•	
933	Traw Statistics	Minimum	22.2		•	_og-transionii		of Log Data	3 1
934		Maximum						of Log Data	
935			347.2					n of log Data	
936		Median						O of log Data	
937							SI	or log Data	1.304
938	Coefficient	טא nt of Variation	410.3						
939	Соетісіен	Skewness							
940		okewness	1.209						
941			Polovent III	Ol Chalichias					
942	Name of Distribution Tree		Relevant UC	JE Statistics		oanomiel Di-	mibusias T-		
943	Normal Distribution Test		0.010		L	ognormal Dis			0.000
944	Shapiro Wilk						•	Test Statistic	
945	Shapiro Wilk (U. ბ 5		Data		•	Critical Value	U.85
946	Data not Normal at 5% Significan	ice Level			Data appear	r Lognormal a	t 5% Signifi	cance Level	
947							1 500 1 100		
948	Assuming Normal Distribut		·		Assı	uming Lognor			0770
949		ıdent's-t UCL	5/1.4					95% H-UCL	
950	95% UCLs (Adjusted for Sket						•	MVUE) UCL	
951		ted-CLT UCL					•	MVUE) UCL	
952	95% M	odified-t UCL	579.2			99% C	hebyshev (MVUE) UCL	2359
953									
954	Gamma Distribution Tes	t				Data Dist	ribution		

	A B C D E k star (bias corrected)	F 0 547	G Data	H annear Gar	nma Distributed a	J K t 5% Significance	L evel	
955	Theta Star		Data	арреа са		it 0 % Oigninicance		
956	nu star							
957	Approximate Chi Square Value (.05)				Nonparametric St	tatietice		
958	Adjusted Level of Significance				140nparametric Ot	95% CLT U(CI 550.7	
959	Adjusted Cever of Significance Adjusted Chi Square Value			95% Jackknife UCL 5				
960	Aujusteu Chi Square Value	4.556				dard Bootstrap UC		
961	Andrew Dedice Test Obsticis	0.014				5% Bootstrap-t UC		
962	Anderson-Darling Test Statistic					•		
963	Anderson-Darling 5% Critical Value					lall's Bootstrap UC		
964	Kolmogorov-Smirnov Test Statistic					entile Bootstrap UC		
965	Kolmogorov-Smirnov 5% Critical Value					BCA Bootstrap UC		
966	Data appear Gamma Distributed at 5% Significance Le	evel			•	hev(Mean, Sd) UC		
967						hev(Mean, Sd) U(
968	Assuming Gamma Distribution				99% Chebysl	hev(Mean, Sd) U(CL 1578	
969	95% Approximate Gamma UCL	796.1						
970	95% Adjusted Gamma UCL	920.5						
971								
972	Potential UCL to Use	•			Use 95% Approx	kimate Gamma UC	CL 796.1	
973							Ti .	
974								
975	C19-C36 Aliphatics							
976								
977		General	l Statistics					
978	Number of Valid Samples	11			Number	of Unique Sample	es 11	
979								
980	Raw Statistics			L	.og-transformed S	Statistics		
	Minimum	13.1				linimum of Log Da	ta 2.573	
981	Maximum					aximum of Log Da		
982	Mean					Mean of log Da		
983	Median					SD of log Da		
		COCOCO					ita 12.146	
						02 0. log 20	ta 2.146	
985	SD	1778					112 2.146	
985 986	SD Coefficient of Variation	1778 1.406				02 0.109 20	ita 2.146	
985 986 987	SD	1778 1.406				02 01 10g 20	ita 2.146	
985 986 987 988	SD Coefficient of Variation	1778 1.406 1.506	ICI Statistics			02 01 10g 20	ita 2.146	
985 986 987 988 989	SD Coefficient of Variation Skewness	1778 1.406 1.506	JCL Statistics		ognormal District		nta 2.146	
985 986 987 988 989	SD Coefficient of Variation Skewness Normal Distribution Test	1778 1.406 1.506 Relevant U	JCL Statistics	L	ognormal Distribu	tion Test		
985 986 987 988 989	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic	1778 1.406 1.506 Relevant U	JCL Statistics	L	Shapir	tion Test To Wilk Test Statis	tic 0.923	
985 986 987 988 989 990	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	1778 1.406 1.506 Relevant U			Shapir Shapir	tion Test o Wilk Test Statis o Wilk Critical Val	tic 0.923 ue 0.85	
985 986 987 988 989 990 991	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic	1778 1.406 1.506 Relevant U			Shapir Shapir	tion Test To Wilk Test Statis	tic 0.923 ue 0.85	
985 986 987 988 989 990 991 992	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	1778 1.406 1.506 Relevant U		Data appear	Shapiro Shapiro Lognormal at 5%	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Leve	tic 0.923 ue 0.85	
985 986 987 988 989 990 991 992 993	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapir	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Leve	tic 0.923 ue 0.85	
985 986 987 988 989 990 991 992 993 994	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapiro Lognormal at 5% uming Lognormal	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level Distribution 95% H-UC	tic 0.923 ue 0.85 el	
985 986 987 988 989 990 991 992 993 994 995	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Distribution 95% H-UC Tyshev (MVUE) UC	tic 0.923 ue 0.85 el	
985 986 987 988 989 990 991 992 993 994 995 996	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Distribution 95% H-UC Tyshev (MVUE) UC Tyshev (MVUE) UC	tic 0.923 ue 0.85 el	
985 986 987 988 989 990 991 992 993 994 995 996 997	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Distribution 95% H-UC Tyshev (MVUE) UC	tic 0.923 ue 0.85 el	
985 986 987 988 990 991 992 993 994 995 996 997 998	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Distribution 95% H-UC Tyshev (MVUE) UC Tyshev (MVUE) UC	tic 0.923 ue 0.85 el	
985 986 987 988 999 991 992 993 994 995 996 997 998 999	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Significan	tic 0.923 ue 0.85 el	
985 986 987 988 990 991 992 993 994 995 996 997 998 1000	Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	1778 1.406 1.506 Relevant U 0.724 0.85		Data appear Assu	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb 99% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Significan	tic 0.923 ue 0.85 el	
985 986 987 988 999 991 992 993 994 995 996 997 998 999 1000 1001	Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	1778 1.406 1.506 Relevant U 0.724 0.85 2237 2407 2278		Data appear Assu	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb 99% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value Significance Level Distribution 95% H-UC yshev (MVUE) UC yshev (MVUE) UC yshev (MVUE) UC	tic 0.923 ue 0.85 el	
985 986 987 988 989 990 991 992 993 994 995 996 997 998 1000 1001 1002 1003	Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected)	1778 1.406 1.506 Relevant U 0.724 0.85 2237 2407 2278 0.389 3255		Data appear Assu	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb 99% Cheb	tion Test To Wilk Test Statis To Wilk Critical Value Significance Level Distribution 95% H-UC yshev (MVUE) UC yshev (MVUE) UC yshev (MVUE) UC	tic 0.923 ue 0.85 el	
985 986 987 988 999 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003	Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	1778 1.406 1.506 Relevant U 0.724 0.85 2237 2407 2278 0.389 3255 8.55		Pata appear Assu	Shapir Shapiro Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb 99% Cheb Data Distribut	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Significance Level To Significance Level To Significance To Wilk Test Statis To Wilk Tes	tic 0.923 ue 0.85 el	
1001 1002 1003 1004 1005	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star nu star Approximate Chi Square Value (.05)	1778 1.406 1.506 Relevant U 0.724 0.85 2237 2407 2278 0.389 3255 8.55 3.058		Pata appear Assu	Shapir Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb 99% Cheb	tion Test o Wilk Test Statis o Wilk Critical Value o Significance Leve Distribution 95% H-UC yshev (MVUE) UC yshev (MVUE) UC yshev (MVUE) UC tion at 5% Significance	tic 0.923 ue 0.85 el CL 127948 CL 7414 CL 9809 CL 14513	
985 986 987 988 989 990 991 992 993 995 995 997 998	Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	1778 1.406 1.506 Relevant U 0.724 0.85 2237 2407 2278 0.389 3255 8.55 3.058 0.0278		Pata appear Assu	Shapir Shapiro Shapiro Shapiro Shapiro Lognormal at 5% uming Lognormal 95% Cheb 97.5% Cheb 99% Cheb Data Distribut nma Distributed a	tion Test To Wilk Test Statis To Wilk Critical Value To Significance Level To Significance Level To Significance Level To Significance To Wilk Test Statis To Wilk Tes	tic 0.923 ue 0.85 el CL 127948 CL 7414 CL 9809 CL 14513 Level	

	A B C D E	F	G	Н	I OF 0/	J Standard Bo	K	L
1008		0.252			95%			
1009							tstrap-t UCL	
1010	Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic					95% Hall's Bo	•	
1011	Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	•	
1012						ebyshev(Me	•	
1013	Data appear Gamma Distributed at 5% Significance Le	evei				• ,		
1014						ebyshev(Me	•	
1015		2520			99% Cn	ebyshev(Me	an, Su) UCL	0000
1016	95% Approximate Gamma UCL 95% Adjusted Gamma UCL							
1017	•	4247						
1018	Potential LICL to Line				Heo 05	% Adjusted 0	Samma LICI	1217
1019	Potential OCL to Ose				056 33	// Aujusteu C	Janina UCL	4247
1020								
1021	CO C19 Aliabatica							
1022	C9-C18 Aliphatics							
1023		Canani	Ctatiaties					
1024	Nicoshau af Valid Consula-		Statistics		K1	mbor of Lini-	ulo Comple -	11
1025	Number of Valid Samples	11			Nu	mber of Unic	lue Samples	11
1026					l og trenefer	nod Ctatlata		
1027	Raw Statistics	10.4			Log-transforr			0.510
1028	Minimum						of Log Data of Log Data	
1029	Maximum Mean						•	
1030							n of log Data	
1031	Median					SL	O of log Data	2.294
1032	Coefficient of Variation	1682						
1033								
1034	Skewness	1.002						
1035		Delevent I	CL Statistics					
1036	Normal Distribution Test	Relevant	CL Statistics		_ognormal Di	etribution To	ot .	
1037	Shapiro Wilk Test Statistic	0.700				Shapiro Wilk		0.004
1038	Shapira Wilk Critical Value					hapiro Wilk C		
1039	Data not Normal at 5% Significance Level	0.00		Data annoa	r Lognormal :	•		0.00
1040	Data not Normal at 0 % digililicance Level			Data appea	ii Logiloilliai	at 570 Olgrilli	cance Level	
1041	Assuming Normal Distribution			Δεσ	suming Logno	rmal Dietrihi	ıtion	
1042	0E% Student's + LICI	2299		7.00	diffing Logic		95% H-UCL	310007
1043	050/ HOL - (A disease d fee Olsesses and)	2233			95%	Chebyshev (
1044	95% Adjusted-CLT UCL	2378				Chebyshev (,	
1045	05% Modified + LICI					Chebyshev (•	
1046	33 % Widamicu-t OCL	_020			3370	-1.05y5/10V (
1047	Gamma Distribution Test				Data Dis	stribution		
1048	k star (hias corrected)	0.382	Data	appear Ga	mma Distribu		anificance I 4	evel
1049	Thata Ctar		Data	appour da			JJUIIO E	
1050	nu star							
1051	Approximate Chi Square Value (.05)				Nonparame	tric Statistics		
1052	Adjusted Level of Significance				. to iparame			2214
1053	Adjusted Cever of Significance Adjusted Chi Square Value		95% CLT UCL 2 95% Jackknife UCL 2					
1054		200	95% Standard Bootstrap UCL 2:					
1055	Anderson Darling Test Statistic	0.432	95% Bootstrap-t UCL 26					
1056	Anderson Darling 5% Critical Value		95% Hall's Bootstrap UCL 24					
1057	Kalmagaray Smirnay Tagt Statistic							
1058	Valmagaray Cmirnay E0/ Critical Valua		·					
1059	Data annear Commo Distributed at 50/ Significance La					ebyshev(Me	•	
1060	Data appoar Gamma Distributed at 0 /0 Organicalitie Le				JJ /0 OII	ioby of ic v (ivic	an, ou, ool	5000

	Α	В	С	D	Е	F	G	Н	I	J	K	L	1	
1061								97.5% Chebyshev(Mean, Sd) UCL						
1062		As	suming Gam	ıma Distributi	on				99% Ch	ebyshev(Me	an, Sd) UCL	6426		
1063			95% A	pproximate C	amma UCL	3906								
1064			95	% Adjusted C	amma UCL	4699								
1065														
1066			Potential U	JCL to Use					Use 95	% Adjusted (Gamma UCL	4699		
1067				Re	commended	UCL exceed	ls the maximu	um observati	on					
1068														

APPENDIX L

TECHNICAL MEMORANDUM RISK CHARACTERIZATION – RESIDENTIAL LAND USE

TECHNICAL MEMORANDUM RISK CHARACTERIZATION – RESIDENTIAL LAND USE SITE 04 – POTENTIAL PAST DISPOSAL AREA, LINCOLN, RI AMSA 68(G)

December 19, 2007

This technical memorandum presents a human health risk characterization for Site 04 – Potential Past Disposal Area (PDA) (the Site) located at the Lincoln, Rhode Island Area Maintenance Support Facility (AMSA) 68(G) to characterize health risks associated with a hypothetical unrestricted residential land use of the Site. A human health risk assessment (HHRA), performed in accordance with CERCLA, the NCP, and applicable USEPA guidance, has been performed for the Site. The HHRA is presented in the Draft Remedial Investigation Report for the Site prepared in September 2007 by MACTEC and KEMRON (KEMRON/MACTEC, 2007). The HHRA characterized health risks associated with exposure to chemicals of potential concern (COPCs) in soil associated with current military and future military or commercial/industrial use. The results of the HHRA indicated that health risks for these land uses were a cumulative cancer risk value below the lower bound of the USEPA cancer risk range of 1x10⁻⁶ to 1x10⁻⁴ and a hazard index equal to 1.

The objective of this remedial investigation addendum risk characterization is to determine if health risks associated with unrestricted (residential) land use exposures to the Site would exceed the USEPA cancer risk range or a hazard index of 1. This information will be used to determine if land use controls (LUCs) are required for the Site.

The results of this risk characterization indicate that cancer risks for residential land use are below the USEPA cancer risk range of $1x10^{-6}$ to $1x10^{-4}$, but the hazard index is greater than the threshold value of 1. Therefore, LUCs are required for this Site.

Methodology

This risk characterization is performed using the same methodology as described in the HRHA for Site 04. Specifically, the same data sets, COPCs, exposure point concentrations (EPCs), toxicity data, and risk characterization methods as described and provided in the HHRA for Site 04 are used. This risk characterization only differs from the HHRA for Site 04 in the receptor exposure scenario selected for evaluation, the quantitative exposure parameters, and the risk characterization results. These elements are described in the technical memorandum.

Residential Exposure Scenario

The residential exposure scenario considers use of the Site for the location of a single family residence, whereby children and adults living at the residence may be exposed to COPCs in soil by incidental ingestion, dermal contact, and inhalation of soil-derived vapors and dust. In addition, these receptors may be exposed to COPCs in groundwater via inhalation of vapors that may migrate from the groundwater to air within a residence (single family house). Consistent with USEPA guidance, the residential exposure scenario is evaluated by considering exposures to young child (ages 1 through 6) and adult populations. Exposure parameters are provided in Table 1 (child resident) and Table 2 (adult resident). In summary, the residential exposure scenario considers exposures to soil 350 days per year over a 30-year period. Soil ingestion rates include 200 milligrams per day (mg/day) for children and 100 mg/day for adults. Dermal contact rates include a contact area of 2,800 square centimeters (cm²) for children and 5,700 cm² for adults, and a soil adherence factor of 0.2 mg/cm² for children and 0.07 mg/cm² for adults. Dust and vapor inhalation consider receptors to be outdoors eight hours per day. Inhalation of vapors that

may migrate from the groundwater to air within a residential dwelling is evaluated assuming that residents are indoors 24 hours per day, 350 days per year.

In the HHRA for Site 04, indoor air EPCs for inhalation of vapors that may migrate from groundwater to indoor air were calculated using the Johnson-Ettinger fate and transport model. The indoor air EPCs calculated using that model required modification for application to the residential scenario, to account for a potentially lower building air exchange rate of 0.25 changes per hour versus the value of 1 change per hour that was used in the Site 04 HHRA. Therefore, the indoor air EPCs derived in the Site 04 HHRA were multiplied by a factor of four to estimate risks for the residential exposure scenario.

Risk Characterization

Cancer and non-cancer risks to child and adult residential receptors are calculated for the COPCs, using the EPCs, cancer slope factor, and reference dose values presented in the Site 04 HHRA. Tables 3 and 4 present the COPCs, EPCs, dose-response values, and corresponding calculated intakes, cancer risks, and non-cancer risks for child and adult residential receptors. The risks are calculated using the exposure parameters provided in Tables 1 and 2.

The risk characterization results for residential exposure to soil at Site 04 are as follows:

Exposure Route	Cancer Risk (ELCR)	Non-Cancer Risk (HI)
Child Resident		
Soil Ingestion	NC	0.1
Soil Dermal	NC	0.007
Soil Dust inhalation	NC	0.00003
Soil Vapor inhalation	$8x10^{-9}$	4.0
Groundwater Vapor Inhalation		0.005
Total – Child Resident [a]	8x10 ⁻⁹	4.0
Adult Resident		
Ingestion	NC	0.01
Dermal	NC	0.001
Dust inhalation	NC	0.00002
Soil Vapor inhalation	$2x10^{-8}$	2.0
Groundwater Vapor Inhalation		0.003
Total – Adult Resident [a]	$2x10^{-8}$	2.0
Cumulative Risk - Resident	$3x10^{-8}$	4.0

[a] – totals reflect rounding

The cumulative cancer risk value is below the USEPA cancer risk range of $1x10^{-6}$ to $1x10^{-4}$. The cumulative hazard index is greater than the threshold value of 1, due to inhalation of volatiles that may migrate from soil to ambient air.

The HHRA demonstrates that the cumulative cancer risk meets the USEPA risk management criteria. However, the hazard index excess a value of 1. Therefore, health risks associated with unrestricted residential land use of the Site exceed USEPA risk management criteria, and LUCs are required to prohibit residential land use of the Site.

Table 1
Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future Land Use - Child Resident

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Exposure Route	Receptor Population	Receptor Age	Exposure Points	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation / Model Name
Soil	Resident	Child	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INGESTION (mg/kg-day)=
Ingestion				IR-S	Ingestion Rate of Soil	200	mg/day	USEPA, 1991	CS-c x IR-S x FI x EF x ED x CF1 x 1/BW x 1/AT
				FI	Fraction Ingested	1	unitless	Assumption	
				EF	Exposure Frequency	350	day/yr	USEPA, 2004	
	l			ED	Exposure Duration	6	yr	USEPA, 2004	
	l			BW	Body Weight	70	kg	USEPA, 2004	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
	l			AT-N	Averaging Time (Non-Cancer)	2190	day	USEPA, 1989 / equal to ED	
				CF1	Conversion Factor	1.E-06	kg/mg		
Soil	Resident	Child	Site 04	CS	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	INTAKE-DERMAL (mg/kg-day) =
Dermal				DAevent	Dose Absorbed Per Event	chemical-specific	mg/cm ² -event	USEPA, 2004	DAevent x SA x EF x ED x EV x 1/BW x 1/AT
	l			SA	Skin Surface Area Available for Contact	2800	cm ²	USEPA, 2004	
				EF	Exposure Frequency	350	day/yr	USEPA, 2004	Where DAevent =
				ED	Exposure Duration	6	yr	USEPA, 2004	CS x AF x ABSd x CF
	l			EV	Events per Day	1	event/day	USEPA, 2004	
				AF	Adherence Factor	0.2	mg/cm ² -event	USEPA, 2004	
	l			ABSd	Dermal Absorption Factor	chemical-specific	unitless	USEPA, 2004	
	l			BW	Body Weight	70	kg	USEPA, 2004	
	l			AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
	l			AT-N	Averaging Time (Non-Cancer)	2190	day	USEPA, 1989 / equal to ED	
				CF	Conversion Factor	1E-06	kg/mg		
Soil	Resident	Child	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INHALATION (ug/m³) =
Dust	l			CAair-dust	Concentration in Air - Dust	95% UCL	ug/m ³	Modeled from soil	CAair x ED x EFx ET x 1/AT
Inhalation	l			EF	Exposure Frequency - outdoor	350	day/yr	USEPA, 2004	CAair-dust=
				ED	Exposure Duration	6	yr	USEPA, 2004	CS-c x 1/PEF x 1000 ug/mg
	l			ET	Exposure Time	0.33	hr/hr	8 hours/day	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2190	day	USEPA, 1989 / equal to ED	
				PEF	Particulate Emission Factor	1.16E+09	m ³ /kg	USEPA, 2002b	
Soil	Resident	Child	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INHALATION (ug/m³) =
Vapor	l			CAair-vapor	Concentration in Air - Vapor	95% UCL	ug/m ³	Modeled from soil	CAair x ED x EFx ET x 1/AT
Inhalation	l			EF	Exposure Frequency - outdoor	350	day/yr	USEPA, 2004	CAair-vapor=
				ED	Exposure Duration	6	yr	USEPA, 2004	CS-c x 1/VF x 1000 ug/mg
	l			ET	Exposure Time	0.33	hr/hr	8 hours/day	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2190	day	USEPA, 1989 / equal to ED	
				VF	Volatilization Factor	chemical-specific	m³/kg	USEPA, 2002b	
Groundwater	Resident	Child	Site 04	CS-gw	Chemical Concentration in Groundwater	Maximum	mg/L		CHEMICAL INTAKE-INHALATION (ug/m³) =
Vapor				CAair-vapor	Concentration in Air - Vapor	Maximum	ug/m ³	Modeled from groundwater [1]	CAair x ED x EFx ET x 1/AT
Inhalation				EF	Exposure Frequency - indoor	350	day/yr	USEPA, 1991	
				ED	Exposure Duration	6	yr	USEPA, 1991	
				ET	Exposure Time	1	hr/hr	24 hours/day	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2190	day	USEPA, 1989 / equal to ED	

Table 1 Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future Land Use - Child Resident

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Exposure Route	Receptor Population	Receptor Age	Exposure Points	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation / Model Name
	i opalation	Age	. 0110						

USEPA, 1989. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A)"; Office of Emergency and Remedial Response; EPA-540/1-89/002 (interim final); Washington, D.C., December.

USEPA, 1991. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance "Standard Default Exposure Factors". OSWER 9285.6-03. March.

USEPA, 2002a. "Calculating UpperConfidence Limits for Exposure Point Concentrations at Hazardous Waste Sites". OSWER 9285.6-10. December.

USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December.

USEPA, 2004. "Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

[1] - Calculated using the Johnson-Ettinger Groundwater to Indoor Air Advanced Model (v. 3.1).

NA - Not Applicable

kg - kilograms mg - milligrams ug - micrograms hr - hour UCL - upper confidence limit Prepared by: MH cm² - square centimeters m³ - cubic meters yr - year Checked by: JHP

Table 2
Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future Land Use - Adult Resident

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

Exposure Route	Receptor Population	Receptor Age	Exposure Points	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation / Model Name
Ingestion	Resident	Adult	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INGESTION (mg/kg-day)=
				IR-S	Ingestion Rate of Soil	100	mg/day	USEPA, 1991	CS-c x IR-S x FI x EF x ED x CF1 x 1/BW x 1/AT
	. !			FI	Fraction Ingested	1	unitless	Assumption	
				EF	Exposure Frequency	350	day/yr	USEPA, 2004	
					Exposure Duration	24	yr	USEPA, 2004	
	. !			BW	Body Weight	70	kg	USEPA, 2004	
	. !			AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
	. !				Averaging Time (Non-Cancer)	8760	day	USEPA, 1989 / equal to ED	
					Conversion Factor	1.E-06	kg/mg	,	
Dermal	Resident	Adult	Site 04	CS	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	INTAKE-DERMAL (mg/kg-day) =
	. !			DAevent	Dose Absorbed Per Event	chemical-specific	mg/cm ² -event	USEPA, 2004	DAevent x SA x EF x ED x EV x 1/BW x 1/AT
	. !			SA	Skin Surface Area Available for Contact	5700	cm ²	USEPA, 2004	
	. !			EF	Exposure Frequency	350	day/yr	USEPA, 2004	Where DAevent =
	. !			ED	Exposure Duration	24	yr	USEPA, 2004	CS x AF x ABSd x CF
	. !			EV	Events per Day	1	event/day	USEPA, 2004	
				AF	Adherence Factor	0.2	mg/cm ² -event	USEPA, 2004	
				ABSd	Dermal Absorption Factor	chemical-specific	unitless	USEPA, 2004	
				BW	Body Weight	70	kg	USEPA, 2004	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	8760	day	USEPA, 1989 / equal to ED	
				CF	Conversion Factor	1E-06	kg/mg		
Dust	Resident	Adult	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INHALATION (ug/m³) =
Inhalation				CAair-dust	Concentration in Air - Dust	95% UCL	ug/m ³	Modeled from soil	CAair x ED x EFx ET x 1/AT
				EF	Exposure Frequency - outdoor	350	day/yr	USEPA, 2004	CAair-dust=
	. !			ED	Exposure Duration	24	yr	USEPA, 2004	CS-c x 1/PEF x 1000 ug/mg
				ET	Exposure Time	0.33	hr/hr	8 hours/day	
	. !			AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
	,			AT-N	Averaging Time (Non-Cancer)	8760	day	USEPA, 1989 / equal to ED	
				PEF	Particulate Emission Factor	1.16E+09	m³/kg	USEPA, 2002b	
Vapor	Resident	Adult	Site 04	CS-c	Chemical Concentration in Soil	95% UCL	mg/kg	USEPA, 2002a	CHEMICAL INTAKE-INHALATION (ug/m³) =
Inhalation				CAair-vapor	Concentration in Air - Vapor	95% UCL	ug/m ³	Modeled from soil	CAair x ED x EFx ET x 1/AT
	. !			EF	Exposure Frequency - outdoor	350	day/yr	USEPA, 2004	CAair-vapor=
				ED	Exposure Duration	24	yr	USEPA, 2004	CS-c x 1/VF x 1000 ug/mg
	. !			ET	Exposure Time	0.33	hr/hr	8 hours/day	
	. !			AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	8760	day	USEPA, 1989 / equal to ED	
				VF	Volatilization Factor	chemical-specific	m³/kg	USEPA, 2002b	
Groundwater	Resident	Adult	Site 04	CS-gw	Chemical Concentration in Groundwater	Maximum	mg/L		CHEMICAL INTAKE-INHALATION (ug/m³) =
Vapor				CAair-vapor	Concentration in Air - Vapor	Maximum	ug/m ³	Modeled from groundwater [1]	CAair x ED x EFx ET x 1/AT
Inhalation				EF	Exposure Frequency - indoor	350	day/yr	USEPA, 1991	
				ED	Exposure Duration	24	yr	USEPA, 1991	
				ET	Exposure Time	1	hr/hr	24 hours/day	
				AT-C	Averaging Time (Cancer)	25550	day	USEPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	8760	day	USEPA, 1989 / equal to ED	

Table 2 Values Used for Daily Intake Calculations Reasonable Maximum Exposure - Future Land Use - Adult Resident

Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

rre Route Receptor Receptor Exposure Parameter Code Parameter Definition	n Value Units	Rationale/ Reference	Intake Equation / Model Name
--	---------------	----------------------	------------------------------

USEPA, 1989. "Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A)"; Office of Emergency and Remedial Response; EPA-540/1-89/002 (interim final); Washington, D.C., December.

USEPA, 1991. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance "Standard Default Exposure Factors". OSWER 9285.6-03. March.

USEPA, 2002a. "Calculating UpperConfidence Limits for Exposure Point Concentrations at Hazardous Waste Sites". OSWER 9285.6-10. December.

USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December.

USEPA, 2004. "Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

[1] - Calculated using the Johnson-Ettinger Groundwater to Indoor Air Advanced Model (v. 3.1).

NA - Not Applicable

kg - kilograms mg - milligrams ug - micrograms hr - hour UCL - upper confidence limit Prepared by: MH cm² - square centimeters m³ - cubic meters yr - year Checked by: JHP

TABLE 3

TABLE 3 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS – REASONABLE MAXIMUM EXPOSURE- CURRENT/FUTURE- RESIDENT- CHILD Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

CENARIO TIMEFRAME: CURRENT/FUTURE ECEPTOR POPULATION: RESIDENT ECEPTOR AGE: CHILD

					EP	C			ER RISK CALC	ULATIONS				CER HAZARD CAL	CULATIONS	
DIUM	EXPOSURE	EXPOSURE	EXPOSURE	CHEMICAL				EXPOSURE	CSF/U	NIT RISK		INTAKE/E)		RfD/I	RfC (1)	HAZARD
	MEDIUM	POINT	ROUTE		VALUE	UNITS		NTRATION			CANCER RISK	CONCENT				QUOTIENT
	AID	DILLINE INDOOR NO	INDOOR VAROR INITIAL ATION	10170-01-1	0.500		VALUE	UNITS	VALUE	UNITS		VALUE	UNITS	VALUE	UNITS	0.5.00
OUND TER	AIR	PLUME - INDOOR AIR	INDOOR VAPOR INHALATION	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.533 0.196	mg/l	NC NC		NC NC			2.0E-02 7.3E-03	ug/m3	6.0E+00 6.0E+00	ug/m3	3.E-03 1.E-03
IEK				4-iso-Propyltoluene	0.0223	mg/l mg/l	NC NC		NC NC			7.3E-03	ug/m3	8.0E+00 ND	ug/m3	1.E-03
				Benzene	0.202	mg/l	1.1E-03	ug/m3	7.8E-06	(ug/m3)-1	8.E-09	1.2E-02	ug/m3	3.0E+01	ug/m3	4.E-04
				Isopropylbenzene	0.0243	mg/l	NC	-5	NC	(-5)	5.2.55	2.0E-03	ug/m3	4.0E+02	ug/m3	5.E-06
				Naphthalene	0.159	mg/l	NC		NC			6.4E-04	ug/m3	3.0E+00	ug/m3	2.E-04
				n-Butylbenzene	0.0306	mg/l	NC		NC			2.3E-03	ug/m3	ND		
				Propylbenzene	0.0476	mg/l	NC		NC			3.2E-03	ug/m3	ND		
			EXPOSURE ROUTE TOTAL	1			I	<u> </u>			8.E-09				1	5.E-03
		EXPOSURE POINT TOTAL	EXT GOOKE ROOTE TOTAL								8.E-09					5.E-03
ľ	EXPOSURE MEDIUM TOT										8.E-09					5.E-03
INDWAT	TER TOTAL										8.E-09					5.E-03
OIL	SOIL	SITE	INGESTION	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC		1	2.0E-03	mg/kg/day	5.0E-02	mg/kg/day	4.E-02
		1		1,3,5-Trimethylbenzene	174	mg/kg	NC		NC		1	2.2E-03	mg/kg/day	5.0E-02	mg/kg/day	4.E-02
		1		4-iso-Propyltoluene	30.7	mg/kg	NC		NC		1	3.9E-04	mg/kg/day	ND		
		1		Naphthalene	8.44	mg/kg	NC		NC		1	1.1E-04	mg/kg/day	2.0E-02	mg/kg/day	5.E-03
		1		o-Xylene 2-Methylnaphthalene	15.7 4.68	mg/kg mg/kg	NC NC		NC NC		1	2.0E-04 6.0E-05	mg/kg/day mg/kg/day	2.0E-01 4.0E-03	mg/kg/day mg/kg/day	1.E-03 1.E-02
				2-wettiyinaphtrialerie	4.00	mg/kg	NC		NC			0.0E-03	ilig/kg/day	4.0E=03	ilig/kg/day	1.6-02
			EXPOSURE ROUTE TOTAL					1			-		1			1.E-01
			DERMAL	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC					5.0E-02	mg/kg/day	
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC					5.0E-02	mg/kg/day	
				4-iso-Propyltoluene	30.7	mg/kg	NC		NC					ND		
				Naphthalene	8.44 15.7	mg/kg	NC NC		NC NC			3.9E-05	mg/kg/day	2.0E-02 2.0E-01	mg/kg/day	2.E-03
				o-Xylene 2-Methylnaphthalene	4.68	mg/kg mg/kg	NC NC		NC NC			2.2E-05	mg/kg/day	2.0E-01 4.0E-03	mg/kg/day mg/kg/day	5.E-03
				2-wearymapharaiene	4.00	mg/kg	140		140				mg/kg/day	4.0L-03	ilig/kg/day	3.E-03
			EXPOSURE ROUTE TOTAL								-					7.E-03
											0.E+00 0.E+00					1.E-01 1.E-01
	EVENOUEDE MEDIUM TOT	EXPOSURE POINT TOTAL									0.E+00		ug/m3	6.0E+00		1.E-01 1.E-05
	EXPOSURE MEDIUM TOT	ĀL	DUCT INITIAL ATION	14 2 4 Trimethylhonnon	450	Lander	NC									
	EXPOSURE MEDIUM TOT		DUST INHALATION	1,2,4-Trimethylbenzene	156 174	mg/kg	NC NC		NC NC			8.2E-05 9.1E-05			ug/m3	
:		ĀL	DUST INHALATION	1,3,5-Trimethylbenzene	174	mg/kg	NC		NC			9.1E-05	ug/m3	6.0E+00	ug/m3 ug/m3	2.E-05
		ĀL	DUST INHALATION		174 30.7 8.44				NC NC NC							
		ĀL	DUST INHALATION	1,3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene	174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg	NC NC NC		NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06	ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02	ug/m3	2.E-05
		ĀL	DUST INHALATION	1,3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene	174 30.7 8.44	mg/kg mg/kg mg/kg	NC NC NC		NC NC NC			9.1E-05 1.6E-05 4.4E-06	ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00	ug/m3 ug/m3	2.E-05 1.E-06
:		ĀL	DUST INHALATION	1,3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene	174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg	NC NC NC		NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06	ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3	2.E-05 1.E-06
		ĀL		1,3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene	174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg	NC NC NC		NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06	ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3	2.E-05 1.E-06 8.E-08
		ĀL	DUST INHALATION EXPOSURE ROUTE TOTAL	1,3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene	174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg	NC NC NC		NC NC NC		0.E+00	9.1E-05 1.6E-05 4.4E-06 8.2E-06	ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3	2.E-05 1.E-06
		AL DUST AT SITE		1,3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene	174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg	NC NC NC		NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06	ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3	2.E-05 1.E-06 8.E-08
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1,3,5-Trimethylbenzene 4-iso-Propytioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	174 30.7 8.44 15.7 4.68	mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC		NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND	ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1.3.5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene 2-Methylnaphthalene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-iso-Propyltoluene	174 30.7 8.44 15.7 4.68	mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC		NC NC NC NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1.3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene 2-Methylnaphthalene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 2.5E-06 1.9E+01 1.7E-01	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00 6.E-02
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1.3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene o-Xylene 2-Methylnaphthalene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-iso-Propyltoluene Naphthalene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 2.5E-06 1.9E+01 1.7E-01	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00 6.E-02
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00 6.E-02
	AIR	AL DUST AT SITE	EXPOSURE ROUTE TOTAL	1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC NC			9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00 6.E-02
	AIR AIR	EXPOSURE POINT TOTAL AMBIENT VAPORS AT SITE EXPOSURE POINT TOTAL	EXPOSURE ROUTE TOTAL AMBIENT VAPOR INHALATION	1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC NC		0.E+00	9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00 4.E+00 4.E+00
·	AIR AIR EXPOSURE MEDIUM TOT	EXPOSURE POINT TOTAL AMBIENT VAPORS AT SITE EXPOSURE POINT TOTAL	EXPOSURE ROUTE TOTAL AMBIENT VAPOR INHALATION	1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC		NC NC NC NC NC NC NC NC NC NC NC		0.E+00 0.E+00 0.E+00	9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00 1.0E+02	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 3.E-05 1.E+00 3.E+00 4.E+00 4.E+00
	AIR AIR EXPOSURE MEDIUM TOT	EXPOSURE POINT TOTAL AMBIENT VAPORS AT SITE EXPOSURE POINT TOTAL	EXPOSURE ROUTE TOTAL AMBIENT VAPOR INHALATION	1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene 2-Methylnaphthalene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-iso-Propylioluene Naphthalene o-Xylene	174 30.7 8.44 15.7 4.68 156 174 30.7 8.44 15.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC NC NC NC NC	RISK ACROS	NG NG NG NG NG NG NG NG NG NG NG NG NG N		0.E+00	9.1E-05 1.6E-05 4.4E-06 8.2E-06 2.5E-06 	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	6.0E+00 ND 3.0E+00 1.0E+02 ND 6.0E+00 6.0E+00 ND 3.0E+00 1.0E+02 ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2.E-05 1.E-06 8.E-08 3.E-05 3.E-05 1.E+00 3.E+00 4.E+00 4.E+00

(1) - Blank cells indicate that an RfD or RfC is not avalailable from the sources used to obtain dose-response data for this risk assessment.

NC - Not carcinogenic by this exposure route.

Checked by: JHP

NA - Not applicable; exposure route not applicable for this chemical/exposure medium. NV - Not volatile; exposure route not complete for this chemical.

--- Not calculated; dose-response data and/or dermal absorption values are not available.

TABLE 4

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS -- REASONABLE MAXIMUM EXPOSURE- CURRENT/FUTURE- RESIDENT- ADULT Site 04 - Potential Past Disposal Area Lincoln, Rhode Island

CENARIO TIMEFRAME: CURRENT/FUTURE ECEPTOR POPULATION: RESIDENT ECEPTOR AGE: ADULT

					EPC				ER RISK CALC	CULATIONS				CER HAZARD CAL	CULATIONS	
MEDIUM	EXPOSURE	EXPOSURE	EXPOSURE	CHEMICAL				XPOSURE	CSF/U	INIT RISK		INTAKE/E		RfD/	/RfC (1)	HAZARD
	MEDIUM	POINT	ROUTE		VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	CANCER RISK	VALUE		VALUE	UNITS	QUOTIENT
GROUND	AIR	PLUME - INDOOR AIR	INDOOR VAPOR INHALATION	1,2,4-Trimethylbenzene	0.533	mg/l	NC NC	UNITS	NC	UNITS	<u> </u> 	1.1E-02	UNITS ug/m3	6.0E+00	ug/m3	2.E-03
WATER	AIIX	PEOME - INDOOR AIR	INDOOR VAFOR INTIALATION	1,3,5-Trimethylbenzene	0.196	mg/l	NC		NC			3.8E-03	ug/m3	6.0E+00	ug/m3	6.E-04
******				4-iso-Propyltoluene	0.0223	mg/l	NC		NC			0.02 00	ugillo	ND	ugimo	0.2 01
				Benzene	0.202	mg/l	2.2E-03	ug/m3	7.8E-06	(ug/m3)-1	2.E-08	6.5E-03	ug/m3	3.0E+01	ug/m3	2.E-04
				Isopropylbenzene	0.0243	mg/l	NC	_	NC			1.1E-03	ug/m3	4.0E+02	ug/m3	3.E-06
				Naphthalene	0.159	mg/l	NC		NC			3.4E-04	ug/m3	3.0E+00	ug/m3	1.E-04
				n-Butylbenzene	0.0306	mg/l	NC		NC			1.2E-03	ug/m3	ND		
				Propylbenzene	0.0476	mg/l	NC		NC			1.7E-03	ug/m3	ND		
			EXPOSURE ROUTE TOTAL	II .		<u> </u>		I			2.E-08		l .	I	l	3.E-03
		EXPOSURE POINT TOTAL									2.E-08					3.E-03
	EXPOSURE MEDIUM TOTAL	AL									2.E-08					3.E-03
GROUNDWAT	ER TOTAL										2.E-08					3.E-03
SOIL	SOIL	SITE	INGESTION	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC			2.1E-04	mg/kg/day	5.0E-02	mg/kg/day	4.E-03
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC			2.4E-04	mg/kg/day	5.0E-02	mg/kg/day	5.E-03
			1	4-iso-Propyltoluene	30.7	mg/kg	NC		NC			4.2E-05	mg/kg/day	ND		
				Naphthalene	8.44	mg/kg	NC		NC			1.2E-05	mg/kg/day	2.0E-02	mg/kg/day	6.E-04
				o-Xylene 2-Methylnaphthalene	15.7 4.68	mg/kg mg/kg	NC NC		NC NC			2.2E-05 6.4E-06	mg/kg/day mg/kg/day	2.0E-01 4.0E-03	mg/kg/day mg/kg/day	1.E-04 2.E-03
				2-wearymapharaiene	4.00	mg/kg	140		140			0.42-00	ilig/kg/day	4.02-00	mg/kg/day	2.2-03
			EXPOSURE ROUTE TOTAL		•											1.E-02
			DERMAL	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC					5.0E-02	mg/kg/day	
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC					5.0E-02	mg/kg/day	
				4-iso-Propyltoluene	30.7	mg/kg	NC		NC					ND		
				Naphthalene o-Xylene	8.44 15.7	mg/kg mg/kg	NC NC		NC NC			6.0E-06	mg/kg/day	2.0E-02 2.0E-01	mg/kg/day mg/kg/day	3.E-04
				2-Methylnaphthalene	4.68	mg/kg	NC NC		NC NC			3.3E-06	mg/kg/day	4.0E-03	mg/kg/day	8.E-04
				2 monymapharations		mgmg	110						mg/kg/ddy	1.02 00	mg/ng/day	5.E 51
			EXPOSURE ROUTE TOTAL													1.E-03
	EXPOSURE MEDIUM TOTA	EXPOSURE POINT TOTAL									0.E+00 0.E+00					1.E-02 1.E-02
	AIR	DUST AT SITE	DUST INHALATION	1,2,4-Trimethylbenzene	156	mg/kg	NC	ı	NC		0.2400	4.3E-05	ug/m3	6.0E+00	ug/m3	7.E-06
	AllX	DOOT AT SITE	BOOT INTIALATION	1,3,5-Trimethylbenzene	174	mg/kg	NC NC		NC			4.8E-05	ug/m3	6.0E+00	ug/m3	8.E-06
				4-iso-Propyltoluene	30.7	mg/kg	NC		NC			8.5E-06	ug/m3	ND		
				Naphthalene	8.44	mg/kg	NC		NC			2.3E-06	ug/m3	3.0E+00	ug/m3	8.E-07
				o-Xylene	15.7	mg/kg	NC		NC			4.3E-06	ug/m3	1.0E+02	ug/m3	4.E-08
				2-Methylnaphthalene	4.68	mg/kg	NC		NC			1.3E-06	ug/m3	ND		
			EXPOSURE ROUTE TOTAL	Ш		l .	l .	l			L	-	l .			2.E-05
		EXPOSURE POINT TOTAL	EXT GOOKE NOOTE TO THE								0.E+00					2.E-05
	AIR	AMBIENT VAPORS AT SITE	AMBIENT VAPOR INHALATION	1,2,4-Trimethylbenzene	156	mg/kg	NC		NC			3.6E+00	ug/m3	6.0E+00	ug/m3	6.E-01
				1,3,5-Trimethylbenzene	174	mg/kg	NC		NC			9.8E+00	ug/m3	6.0E+00	ug/m3	2.E+00
				4-iso-Propyltoluene	30.7	mg/kg	NC		NC					ND		
				Naphthalene	8.44	mg/kg	NC		NC			8.8E-02	ug/m3	3.0E+00	ug/m3	3.E-02
				o-Xylene 2-Methylnaphthalene	15.7 4.68	mg/kg mg/kg	NC NC		NC NC			1.2E+00 4.9E-02	ug/m3 ug/m3	1.0E+02 ND	ug/m3	1.E-02
			1	2-monymaphinalene	4.00	mg/kg	INC		INC			4.56-02	ug/iiis	ND		
			1		İ											
			EXPOSURE ROUTE TOTAL		•	•	-				-					2.E+00
		EXPOSURE POINT TOTAL									0.E+00					2.E+00
	EXPOSURE MEDIUM TOTA	AL									0.E+00					2.E+00
SOIL TOTAL											0.E+00					2.E+00
						IOTAL	KECEPTOR F	RISK ACROS	S ALL MEDI	A	2.E-08	TOTAL RECEP	IUR HAZARD	ACROSS ALL I	WEDIA	2.E+00

NOTES:

(1) - Blank cells indicate that an RfD or RfC is not avalailable from the sources used to obtain dose-response data for this risk assessment.

NC - Not carcinogenic by this exposure route.

NA - Not applicable; exposure route not applicable for this chemical/exposure medium.

NV - Not volatile; exposure route not complete for this chemical.

--- Not calculated; dose-response data and/or dermal absorption values are not available.

Prepared by: MH Checked by: JHP

APPENDIX M

RESPONSE TO RIDEM COMMENTS ON DRAFT FINAL REMEDIAL INVESTIGATION REPORT

Reference: Letter from Mr. Timothy M. Fleury (RIDEM) to Mr. Ira Silverberg (94th

RRC); dated February 29, 2008; AMSA 68 (G) USAR Site 04 Potential Past Disposal Area – Draft Final Remedial Investigation Report (December 19,

2007)

General Response from the U.S. Army Environmental Command:

In establishing the Defense Environmental Restoration Program (10 U.S.C. §§ 2701-2708 and 2810), Congress directed that Department of Defense environmental cleanup efforts be consistent with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Additionally, CERCLA itself requires that cleanup efforts at federal facilities be conducted under CERCLA (42 U.S.C. § 9620). Due to these reasons, and in order to have a common framework for managing a national cleanup program, the Army uses CERCLA as the primary legislative authority for managing cleanup of its sites.

Under CERCLA Section 121, the Army must attain all state applicable or relevant and appropriate requirements (ARARs) for remedial actions required under CERCLA Sections 104 and 106. If a site is determined to be "no further action" because it poses no current or potential threat to human health or the environment based on the reasonably foreseeable land use, ARARs are not applicable. If a remedial action is required, only those state standards the state identifies in a timely manner and are more stringent than federal requirements may be ARARs. Because CERCLA remedial actions are exempt from permitting requirements, the Army may comply with only the substantive portions of ARARs. Administrative and procedural requirements are not ARARs.

For those reasons, the Army does not intend to follow the Rhode Island Department of Environmental Management (RIDEM) Remediation Regulations for Site 04 – Potential Past Disposal Area at the AMSA 68 (G) U.S. Army Reserve (USAR) facility in Lincoln, RI. A Draft Final Remedial Investigation (RI) Report for Site 04 concluded that there is no unacceptable risk to receptors based on current or reasonably foreseeable future land use. Thus, because there is no remedial action under CERCLA Sections 104 or 106, ARARs are not applicable. Moreover, even if remediation was necessary, the Army could only comply with those aspects of the RIDEM Remediation Regulations that are identified as ARARs. The Army cannot follow the procedural requirements of the RIDEM Remediation Regulations.

In following CERCLA, the Army will continue to provide you with copies of documents for your review. The Army appreciates technical review comments from your agency and we encourage your participation in the process. In the event your agency does not wish to review the CERCLA documents, please provide either a written letter or email acknowledgement of your decision. The Army is willing to provide the agency with a 30 day review period, but if the agency informs the Army it is not willing to review the documents, the Army will proceed under our CERCLA authority.

Office of Waste Management Comments

General Comments

1. The Office of Waste Management (OWM) assumes that all properties may be used for residential and/or recreational re-use, therefore comparing all analytical soils samples to the Residential Direct Exposure Criteria (RDEC). This RIR compares all soil values to the Industrial/Commercial Direct Exposure Criteria (ICDEC) even though there are concentrations (e.g. individual Polycyclic Aromatic Hydrocarbons (PARs) and Total Petroleum Hydrocarbons (TPH)) that are found to exceed the RDEC but not the ICDEC. Please provide reasoning as to why all samples were compared to the ICDEC rather than the RDEC and update all tables where soil samples exceed the RIDEM RDEC.

In addition, RIDEM's RDEC allows for unrestricted use of the property, whereas any other criteria will require, at a minimum, an Environmental Land Use Restriction (ELUR). An ELUR is only one of a number of remedial alternatives to be evaluated. It is understood that it is not the Military's policy to apply ELURs to federally owned properties. Therefore, if an ELUR is proposed as part of the remedy, the owner would have to provide assurance, in writing, that a.) The owner has the ability to record an ELUR on the deed, b.) Acknowledge RIDEM has the right to enter the property at reasonable times for the purpose of monitoring compliance with the remedial action (Remediation Regulations, Section 8.09) and c.) Acknowledge that RIDEM can take enforcement action to ensure implementation of the remedy. An ELUR will require annual reporting to the Department and a provision for oversite costs for review of annual reports. The ELUR would also not be a supplement to Land Use Controls (LUCs) but rather as part of a final remedy for the property, which shall carry on the deed for the property with all future property owners.

Therefore, additional excavation may be necessary in the areas revealing levels of PAHs and TPH above the Department's RDEC but below the Department's ICDEC unless a RIDEM approved ELUR is part of the final remedy. Please modify these changes for the work plan. If excavation is not feasible and if the contamination exceeding the RDEC is located beneath a form of engineered cap (e.g. asphalt) then an ELUR shall be recorded without any excavation being necessary.

Response: The current land use of the Lincoln AMSA 68 (G) facility is as an active USAR installation. The future land use of the USAR property is assumed to continue to be non-residential (i.e., military or industrial/commercial). The response actions being conducted at Site 04 under the USAEC contract are based on current and reasonably foreseeable future land use, which as stated above is considered to be non-residential. Therefore, the data evaluation presented in the RI Report is based on a comparison to RIDEM Industrial/Commercial Direct Exposure Criteria.

Appendix L of the RI Report contains a Technical Memorandum that presents a human health risk characterization for Site 04 to evaluate health risks associated with a hypothetical unrestricted residential land use scenario. The results of the risk characterization indicate that cancer risks for residential land use are below the USEPA cancer risk range of $1x10^{-6}$ to $1x10^{-4}$, but the HI exceeds the threshold value of 1. Therefore, land use controls required to prohibit residential use of the Site will be addressed in the Decision Document for Site 04 to be prepared by the U.S. Army.

Specific Comments

2. Pg. 22, Section 2.2.3.3 Groundwater Samples

The OWM does not recognize filtered groundwater samples as representing adequate site groundwater conditions. All unfiltered groundwater samples, not filtered samples, should be compared to the RIDEM GA groundwater objectives to determine if further groundwater issues exist. Numerous groundwater-monitoring wells exceeded the Department's GA Groundwater Objective of 0.015 mg/L for lead. Furthermore, dissolved groundwater samples analyzed for lead exhibited concentrations exceeding the RIDEM's GA Groundwater Objective, which is not attributable to suspended solids being the source of lead contamination in the groundwater sample. Please revise the remedial alternatives to include a remedy for the concentrations of lead exceeding the RIDEM's GA Groundwater Objectives.

This RIR has identified concentrations of Benzene and Naphthalene that exceed the RIDEM's GA Groundwater Objectives and in some cases the RIDEM's GB Groundwater Objectives. Please revise the remedial alternatives to include a remedy for the concentrations of Benzene and Naphthalene exceeding RIDEM's GA Groundwater Objectives. Some of these monitoring wells may be incorporated in the in situ chemical oxidation that is proposed for Site 05 (Former Gasoline UST) to break down the Benzene and Naphthalene concentrations if the chemical oxidation is applicable to those compounds, especially since levels of Benzene are being detected above the regulatory criteria in off site monitoring wells.

Response: As indicated in Section 2.2.3.2 – Groundwater Samples of the RI Report:

"Filtered sample lead concentrations were markedly lower, and were detected in twelve out of the fifteen groundwater samples in the 2006 investigation. Lead in filtered samples was not detected in samples from any of the seven direct-push explorations (GP-01 through GP-07) in the 2007 investigation. Concentrations of detected dissolved lead in filtered samples ranged from 0.00276 mg/L (MW-2) to 0.116 mg/L (SS-06), and exceed the GA GO of 0.015 mg/L in MW-15, SS-03, SS-05, and SS-06 (see Figure 2-5). Concentrations of lead in the filtered groundwater samples are significantly lower than those in the unfiltered samples, suggesting that the lead detected in the unfiltered samples is largely attributable to suspended solids."

A summary table of lead analytical data from monitoring well samples collected in January 2006 is presented below (complete data presented in Table 2-6 of the RI Report), with highlighted results indicating concentrations in excess of the GA GO of 0.015 mg/L:

	Filtered Result	Unfiltered Result
	(Dissolved)	(Total)
MW-1	<0.001 (ND)	0.000429
MW-2	0.000397	0.0059
MW-8	<0.001 (ND)	0.00201
MW-14	<0.001 (ND)	0.0173
MW-15	0.0201	0.151

The table above indicates that the lead concentrations of the unfiltered results are all greater than the filtered results, supporting the theory that the elevated lead concentrations in the unfiltered samples are largely attributable to and associated with suspended solids. In addition, the results

from the unfiltered sample from MW-14 only slightly exceed the GA GO of 0.015 mg/L. Additional data from the Nobis RI Report indicates that (unfiltered) groundwater samples collected from monitoring wells MW-1, MW-2, and MW-8 in 2003 did not contain concentrations of lead greater than 0.005 mg/L.

As presented in Section 1.2 of the RI Report, GB criteria are applied to environmental media at the United States Army Reserve Center (USARC) property and immediately adjacent property to the north of the Site, because these properties overlie GB groundwater. The GA criteria are applied downgradient along the southeast side of Albion Road to help ensure that the groundwater contamination will not pose a substantial likelihood of exceeding the GA GO at the boundary between the GA and GB classified aquifers, which is interpreted to be the center line of Albion Road.

The Corrective Action Plan for Site 05 – Former Gasoline UST will propose installation of new monitoring wells downgradient from Albion Road and a groundwater monitoring program to help ensure that total (unfiltered) lead concentrations in groundwater will not pose a substantial likelihood of exceeding the GA GO at the boundary between the GA and GB classified aquifers, which is interpreted to be the center line of Albion Road.

The presence of benzene and naphthalene is likely attributable to contamination originating at Site 05 – Former Gasoline UST. The Corrective Action Plan for Site 05 – Former Gasoline UST will propose remedial action to address the presence of these compounds.

3. Pg. 95, Section 4.1 Summary and Conclusions Site 04 – PDA

Please note that the Department must assume an unrestricted residential scenario, involving children, for all future properties as the most restrictive scenario during risk assessments. Using this scenario, a hazard index of greater than one (1) was calculated, therefore, the USAEC must default to the RIDEM's <u>Remediation Regulations</u> and all other applicable RIDEM Regulations, if any. The Department does not concur with the decision of land use controls as being the only remedy for Site 04 given the soil concentrations of TPH and PAHs as well as the exceedances of the RIDEM GA Groundwater Objectives for specific Volatile Organic Compounds (VOCs).

Furthermore, the body weight used in Table 1 of Appendix L uses a value of 70 kg for the child resident scenario. This value is not consistent with Appendix D of the Remediation Regulations and a value of 15 kg should be used, which will alter the results of the risk characterization.

Response: As stated in the Army's General Response, the Army does not intend to follow the RIDEM Remediation Regulations for Site 04 – Potential Past Disposal Area at the AMSA 68 (G) U.S. Army Reserve (USAR) facility in Lincoln, RI. The Draft Final Remedial Investigation (RI) Report for Site 04 concluded that there is no unacceptable risk to receptors based on current or reasonably foreseeable future land use. Thus, because there is no remedial action under CERCLA Sections 104 or 106, ARARs including RIDEM Remediation Regulations are not applicable.

The body weight for the child listed in Table 1 is incorrect – it should be 15 kg. However, the calculations used the correct body weight of 15 kg. Therefore, the results and conclusions are correct – only the table that shows the exposure parameters is incorrect. The table will be edited to show the correct body weight of 15 kg used in the calculations.

4. Pg. 95, Section 4.2 Recommendations

The <u>Remediation Regulations</u> require the evaluation of three (3) remedial alternatives, one of which must be the no action alternative. The no action alternative is to be used as a baseline comparison against the other proposed remedies. Please revise the RIR to be in compliance with **Section 7.04 Development of Remedial Alternatives** of the <u>Remediation Regulations</u>. The USAEC must take into account the VOCs and lead in groundwater as well as all of the soil contamination exceeding the RIDEM's RDEC (TPH and PAHs). These alternatives may include excavation with off site disposal and compliance sampling, the incorporation of chemical oxidation with Site 05, installation of an engineered cap with an ELUR, or any other remedy in accordance with the <u>Remediation Regulations</u>.

Response: As stated in the Army's General Response, the Army does not intend to follow the RIDEM Remediation Regulations for Site 04 – Potential Past Disposal Area at the AMSA 68 (G) U.S. Army Reserve (USAR) facility in Lincoln, RI. The Draft Final Remedial Investigation (RI) Report for Site 04 concluded that there is no unacceptable risk to receptors based on current or reasonably foreseeable future land use. Thus, because there is no remedial action under CERCLA Sections 104 or 106, ARARs including RIDEM Remediation Regulations are not applicable.